Volume 86, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Water samples of 0, 5, and 30 nephelometric turbidity units (NTU) spiked with oocysts were exposed to natural sunlight using a 25-L static solar reactor fitted with a compound parabolic collector (CPC). The global oocyst viability was calculated by the evaluation of the inclusion/exclusion of the fluorogenic vital dye propidium iodide and the spontaneous excystation. After an exposure time of 8 hours, the global oocyst viabilities were 21.8 ± 3.1%, 31.3 ± 12.9%, and 45.0 ± 10.0% for turbidity levels of 0, 5, and 30 NTU, respectively, and these values were significantly lower ( < 0.05) that the initial global viability of the isolate (92.1 ± 0.9%). The 25-L static solar reactor that was evaluated can be an alternative system to the conventional solar water disinfection process for improving the microbiological quality of drinking water on a household level, and moreover, it enables treatment of larger volumes of water (> 10 times).


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 2002. The World Health Report 2002—Reducing Risks, Promoting Healthy Life. Available at: http://www.who.int/whr/2002/en/. Accessed May 18, 2011. [Google Scholar]
  2. Ashbolt NJ, , 2004. Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 198: 229238.[Crossref] [Google Scholar]
  3. World Health Organization, 2007. Combating Waterborne Disease at the Household Level. Geneva, Switzerland: World Health Organization, 35. [Google Scholar]
  4. Boschi-Pinto C, Velebit L, Shibuya K, , 2008. Estimating child mortality due to diarrhoea in developing countries. Bull World Health Organ 86 710717.[Crossref] [Google Scholar]
  5. Swiss Federal Institute of Aquatic Science and Technology (EAWAG), 2011. Solar water disinfection: the method. Available at: http://www.sodis.ch/methode/index_EN. Accessed June 20, 2011. [Google Scholar]
  6. Kehoe SC, Barer MR, Devlin LO, McGuigan KG, , 2004. Batch process solar disinfection is an efficient means of disinfecting drinking water contaminated with Shigella dysenteriae type I. Lett Appl Microbiol 38: 410414.[Crossref] [Google Scholar]
  7. Berney M, Weilenmann HU, Simonetti A, Egli T, , 2006. Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella typhimurium and Vibrio cholerae . J Appl Microbiol 101: 828836.[Crossref] [Google Scholar]
  8. Heaselgrave W, Patel N, Kilvington S, Kehoe SC, McGuigan KG, , 2006. Solar disinfection of poliovirus and Acanthamoeba polyphaga cysts in water—a laboratory study using simulated sunlight. Lett Appl Microbiol 43: 125130.[Crossref] [Google Scholar]
  9. McGuigan KG, Méndez-Hermida F, Castro-Hermida JA, Ares-Mazás E, Kehoe SC, Boyle M, Sichel C, Fernández-Ibáñez P, Meyer BP, Ramalingham S, Meyer EA, , 2006. Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water. J Appl Microbiol 101: 453463.[Crossref] [Google Scholar]
  10. Boyle M, Sichel C, Fernández-Ibáñez P, Arias-Quiroz GB, Iriarte-Puna M, Mercado A, Ubomba-Jaswa E, McGuigan KG, , 2008. Bactericidal effect of solar water disinfection under real sunlight conditions. Appl Environ Microbiol 74: 29973001.[Crossref] [Google Scholar]
  11. Heaselgrave W, Kilvington S, , 2010. Antimicrobial activity of simulated solar disinfection against bacterial, fungal, and protozoan pathogens and its enhancement by riboflavin. Appl Environ Microbiol 76: 60106012.[Crossref] [Google Scholar]
  12. Heaselgrave W, Kilvington S, , 2011. The efficacy of simulated solar disinfection (SODIS) against Ascaris, Giardia, Acanthamoeba, Naegleria, Entamoeba and Cryptosporidium . Acta Trop 119: 138143.[Crossref] [Google Scholar]
  13. Conroy RM, Elmore-Meegan M, Joyce T, McGuigan KG, Barnes J, , 1996. Solar disinfection of drinking water and diarrhoea in Maasai children: a controlled field trial. Lancet 348: 16951697.[Crossref] [Google Scholar]
  14. Conroy RM, Meegan ME, Joyce T, McGuigan K, Barnes J, , 1999. Solar disinfection of water reduces diarrhoeal disease: an update. Arch Dis Child 81: 337338.[Crossref] [Google Scholar]
  15. Conroy RM, Meegan ME, Joyce T, McGuigan K, Barnes J, , 2001. Solar disinfection of drinking water protects against cholera in children under 6 years of age. Arch Dis Child 85: 293295.[Crossref] [Google Scholar]
  16. Rose A, Roy S, Abraham V, Holmgren G, George K, Balraj V, Abraham S, Muliyil J, Joseph A, Kang G, , 2006. Solar disinfection of water for diarrhoeal prevention in southern India. Arch Dis Child 91: 139141. [Google Scholar]
  17. Du Preez M, McGuigan KG, Conroy RM, , 2010. Solar disinfection of drinking water in the prevention of dysentery in South African children aged under 5 years: the role of participant motivation. Environ Sci Technol 44: 87448749.[Crossref] [Google Scholar]
  18. Altherr AM, Mosler HJ, Tobias R, Butera F, , 2008. Attitudinal and relational factors predicting the use of solar water disinfection: a field study in Nicaragua. Health Educ Behav 35: 207220.[Crossref] [Google Scholar]
  19. Walker DC, Len SV, Sheehan B, , 2004. Development and evaluation of a reflective solar disinfection pouch for treatment of drinking water. Appl Environ Microbiol 70: 25452550.[Crossref] [Google Scholar]
  20. Navntoft C, Ubomba-Jaswa E, McGuigan KG, Fernández-Ibáñez P, , 2008. Effectiveness of solar disinfection using batch reactors with non-imaging aluminium reflectors under real conditions: natural well-water and solar light. J Photochem Photobiol B 93: 155161.[Crossref] [Google Scholar]
  21. Fayer R, , 2004. Cryptosporidium: a water-borne zoonotic parasite. Vet Parasitol 126: 3756.[Crossref] [Google Scholar]
  22. Gómez-Couso H, Fontán-Sainz M, Sichel C, Fernández-Ibáñez P, Ares-Mazás E, , 2009. Efficacy of the solar water disinfection method in turbid waters experimentally contaminated with Cryptosporidium parvum oocysts under real field conditions. Trop Med Int Health 14: 620627.[Crossref] [Google Scholar]
  23. Kilani RT, Sekla L, , 1987. Purification of Cryptosporidium oocysts and sporozoites by cesium chloride and Percoll gradients. Am J Trop Med Hyg 36: 505508. [Google Scholar]
  24. Lorenzo-Lorenzo MJ, Ares-Mazás ME, Villacorta-Martínez de Maturana I, Durán-Oreiro D, , 1993. Effect of ultraviolet disinfection of drinking water on the viability of Cryptosporidium parvum oocysts. J Parasitol 79: 6770. [Google Scholar]
  25. Amar CF, Dear PH, McLauchlin J, , 2004. Detection and identification by real time PCR/RFLP analyses of Cryptosporidium species from human faeces. Lett Appl Microbiol 38: 217222.[Crossref] [Google Scholar]
  26. Patrick EAF, , 1980. Soils: Their Formation, Classification and Distribution. London, United Kingdom: Longman, 353. [Google Scholar]
  27. Ubomba-Jaswa E, Fernández-Ibáñez P, Navntoft C, Polo-López MI, McGuigan KG, , 2010. Investigating the microbial inactivation of a 25 L batch solar disinfection (SODIS) reactor enhanced with a compound parabolic collector (CPC) for household use. J Chem Technol Biotechnol 85: 10281037.[Crossref] [Google Scholar]
  28. Campbell AT, Robertson LJ, Smith HV, , 1992. Viability of Cryptosporidium parvum oocysts: correlation of in vitro excystation with inclusion or exclusion of fluorogenic vital dyes. Appl Environ Microbiol 58: 34883493. [Google Scholar]
  29. Dowd SE, Pillai SD, , 1997. A rapid viability assay for Cryptosporidium oocysts and Giardia cysts for use in conjunction with indirect fluorescent antibody detection. Can J Microbiol 43: 658662.[Crossref] [Google Scholar]
  30. Gómez-Couso H, Fontán-Sainz M, Ares-Mazás E, , 2010. Thermal contribution to the inactivation of Cryptosporidium in plastic bottles during solar water disinfection procedures. Am J Trop Med Hyg 82: 3539.[Crossref] [Google Scholar]
  31. Kehoe SC, Joyce TM, Ibrahim P, Gillespie JB, Shahar RA, McGuigan KG, , 2001. Effect of agitation, turbidity, aluminium foil reflectors and container volume on the inactivation efficiency of batch-process solar disinfectors. Water Res 35: 10611065.[Crossref] [Google Scholar]
  32. Peng X, Murphy T, Holden NM, , 2008. Evaluation of the effect of temperature on the die-off rate for Cryptosporidium parvum oocysts in water, soils, and feces. Appl Environ Microbiol 74: 71017107.[Crossref] [Google Scholar]
  33. Smith HV, Nichols RA, Grimason AM, , 2005. Cryptosporidium excystation and invasion: getting to the guts of the matter. Trends Parasitol 21: 133142.[Crossref] [Google Scholar]
  34. Sobsey MD, Stauber CE, Casanova LM, Brown JM, Elliott MA, , 2008. Point of use household drinking water filtration: a practical, effective solution for providing sustained access to safe drinking water in the developing world. Environ Sci Technol 42: 42614267.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 19 May 2011
  • Accepted : 10 Jul 2011
  • Published online : 01 Feb 2012

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error