Volume 86, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



With the increasing occurrence of drug resistance in the malaria parasite, , there is a great need for new and novel anti-malarial drugs. We have developed a 384-well, high-throughput imaging assay for the detection of new anti-malarial compounds, which was initially validated by screening a marine natural product library, and subsequently used to screen more than 3 million data points from a variety of compound sources. Founded on another fluorescence-based growth inhibition assay, the DNA-intercalating dye 4′,6-diamidino-2-phenylindole, was used to monitor changes in parasite number. Fluorescent images were acquired on the PerkinElmer Opera High Throughput confocal imaging system and analyzed with a spot detection algorithm using the Acapella data processing software. Further optimization of this assay sought to increase throughput, assay stability, and compatibility with our high-throughput screening equipment platforms. The assay typically yielded Z'-factor values of 0.5–0.6, with signal-to-noise ratios of 12.

[open-access] Freely available online through the Open Access option.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. WHO, 2008. World Malaria Report. Geneva: World Health Organization. [Google Scholar]
  2. Guerra CA, Snow RW, Hay SI, , 2006. Mapping the global extent of malaria in 2005. Trends Parasitol 8: 353358.[Crossref] [Google Scholar]
  3. Tuteja R, , 2007. Malaria–an overview. Febs J 274: 46704679.[Crossref] [Google Scholar]
  4. Schlitzer M, , 2007. Malaria chemotherapeutics part I: history of antimalarial drug development, currently used therapeutics, and drugs in clinical development. ChemMedChem 2: 944986.[Crossref] [Google Scholar]
  5. Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton MJ, Pain A, Nelson KE, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barell B, , 2002. Genome sequence of the human malaria parasite Plasmodium falciparum . Nature 419: 498511.[Crossref] [Google Scholar]
  6. Cunha-Rodrigues M, Prudencio M, Mota MM, Haas W, , 2006. Antimalarial drugs—host targets (re)visited. Biotechnol J 1: 321332.[Crossref] [Google Scholar]
  7. Desjardins RE, Canfield CJ, Haynes JD, Chulay JD, , 1979. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother 16: 710718.[Crossref] [Google Scholar]
  8. Li Q, Gerena L, Xie L, Zhang J, Kyle D, Milhous W, , 2007. Development and validation of flow cytometric measurement for parasitemia in cultures of P. falciparum vitally stained with YOYO-1. Cytometry A 71A: 297307.[Crossref] [Google Scholar]
  9. Noedl H, Bronnert J, Yingyuen K, Attlmayr B, Kollaritsch H, Fukuda M, , 2005. Simple histidine-rich protein 2 double-site sandwich enzyme-linked immunosorbent assay for use in malaria drug sensitivity testing. Antimicrob Agents Chemother 49: 35753577.[Crossref] [Google Scholar]
  10. Druilhe P, Moreno A, Blanc C, Brasseur PH, Jacquier P, , 2001. A colorimetric in vitro drug sensitivity assay for Plasmodium falciparum based on a highly sensitive double-site lactate dehydrogenase antigen-capture enzyme-linked immunosorbent assay. Am J Trop Med Hyg 64: 233241. [Google Scholar]
  11. Makler MT, Ries JM, Williams JA, Bancroft JE, Piper RC, Gibbins BL, Hinrichs DJ, , 1993. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am J Trop Med Hyg 48: 739741. [Google Scholar]
  12. Smeijsters LJ, Zijlstra NM, Franssen FF, Overdulve JP, , 1996. Simple, fast, and accurate fluorometric method to determine drug susceptibility of Plasmodium falciparum in 24-well suspension cultures. Antimicrob Agents Chemother 40: 835838. [Google Scholar]
  13. Corbett Y, Herrera L, Gonzalez J, Cubilla L, Capson TL, Coley PD, Kursar TA, Romero LI, Ortega-Barria E, , 2004. A novel DNA-based microfluorimetric method to evaluate antimalarial drug activity. Am J Trop Med Hyg 70: 119124. [Google Scholar]
  14. Quashie NB, de Koning HP, Ranford-Cartwright LC, , 2006. An improved and highly sensitive microfluorimetric method for assessing susceptibility of Plasmodium falciparum to antimalarial drugs in vitro . Malar J 5: 95.[Crossref] [Google Scholar]
  15. Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M, , 2004. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob Agents Chemother 48: 18031806.[Crossref] [Google Scholar]
  16. Baniecki ML, Wirth DF, Clardy J, , 2007. High-throughput Plasmodium falciparum growth assay for malaria drug discovery. Antimicrob Agents Chemother 51: 716723.[Crossref] [Google Scholar]
  17. Plouffe D, Brinker A, McNamara C, Henson K, Kato N, Kuhen K, Nagle A, Adrian F, Matzen JT, Anderson P, Nam T, Gray NS, Chatterjee A, Janes J, Yan FS, Trager R, Caldwell JS, Scholtz PG, Zhou Y, Winzeler EA, , 2008. In silico activity profiling reveals the mechanism of action of antimalarials discovered in a high-throughput screen. Proc Natl Acad Sci USA 105: 90599064.[Crossref] [Google Scholar]
  18. Simeonov A, Jadhav A, Thomas CJ, Wang Y, Huang R, Southall NT, Shinn P, Smith J, Austin CP, Auld DS, Inglese J, , 2008. Fluorescence spectroscopic profiling of compound libraries. J Med Chem 51: 23632371.[Crossref] [Google Scholar]
  19. Wells TN, Alonso PL, Gutteridge WE, , 2009. New medicines to improve control and contribute to the eradication of malaria. Nat Rev Drug Discov 8: 879891.[Crossref] [Google Scholar]
  20. Ross NE, Pritchard CJ, Rubin DM, Duse AG, , 2006. Automated image processing method for the diagnosis and classification of malaria on thin blood smears. Med Biol Eng Comput 44: 427436.[Crossref] [Google Scholar]
  21. Sio SW, Sun W, Kumar S, Bin WZ, Tan SS, Ong SH, Kikuchi H, Oshima Y, Tan KSW, , 2007. MalariaCount: an image analysis-based program for the accurate determination of parasitemia. J Microbiol Methods 68: 1118.[Crossref] [Google Scholar]
  22. Frean JA, , 2009. Reliable enumeration of malaria parasites in thick blood films using digital image analysis. Malar J 8: 218.[Crossref] [Google Scholar]
  23. Trager W, Jensen JB, , 1976. Human malaria parasites in continuous culture. Science 193: 673675.[Crossref] [Google Scholar]
  24. Lambros C, Vanderberg JP, , 1979. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol 65: 418420.[Crossref] [Google Scholar]
  25. Johnson JD, Dennull RA, Gerena L, Lopez-Sanchez M, Roncal NE, Waters NC, , 2007. Assessment and continued validation of the malaria SYBR Green I-based fluorescence assay for use in malaria drug screening. Antimicrob Agents Chemother 51: 19261933.[Crossref] [Google Scholar]
  26. Davis RA, Duffy S, Avery VM, Camp D, Hooper JN, , Quinn RJ, 2010. (+)-7-Bromotrypargine: an antimalarial β-carboline from the Australian marine sponge Ancorina sp. Tetrahedron Lett 51: 583585.[Crossref] [Google Scholar]
  27. Yang X, Davis RA, Buchanan MS, Duffy S, Avery VM, Camp D, Quinn RJ, , 2010. Antimalarial bromotyrosine derivatives from the Australian marine sponge Hyattella sp. J. Nat. Prod 73: 985987.[Crossref] [Google Scholar]
  28. Guiguemde WA, Anang A, Shelat AA, Bouck D, Duffy S, Crowther GJ, Davis PH, Smithson D, Connelly M, Clark J, Zhu F, Jiménez-Díaz MB, Martinez MS, Wilson E, Tripathi AK, Gut J, Sharlow ER, Bathurst I, El Mazouni F, Fowble JW, Forquer I, McGinley PL, Castro S, Angulo-Barturen I, Ferrer S, Rosenthal PL, DeRisi JL, Sullivan DJ, Jr Lazo JS, Roos DS, Riscoe MK, Phillips MA, Rathod PK, Van Voorhis WC, Avery VM, Guy RK, , 2010. Chemical genetics of Plasmodium falciparum . Nature 465: 311315.[Crossref] [Google Scholar]
  29. Contreras CE, Rivas MA, Dominguez J, Charris J, Palacios M, Bianco NE, Blanca I, , 2004. Stage-specific activity of potential antimalarial compounds measured in vitro by flow cytometry in comparison to optical microscopy and hypoxanthine uptake. Mem Inst Oswaldo Cruz 99: 179184.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 10 May 2011
  • Accepted : 12 Sep 2011
  • Published online : 01 Jan 2012

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error