1921
Volume 86, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Correlations between the genetic diversity of (syn. ) isolates and their respective geographic origins support the theoretic assumption that visceral leishmaniasis probably originated in the Old World. Because dogs are widely considered to be the main reservoir of this disease, the present study aimed to investigate the degree of genetic divergence among 44 leishmanial canine isolates from two Brazilian cities, Jequié and Campo Grande, located approximately 2,028 km from each other. We hypothesized that a low degree of genetic divergence would be observed among these isolates. In fact, statistical analyses found no significant differences between the isolates using both random amplified polymorphic DNA and multilocus microsatellite typing genotyping techniques with three and seven markers, respectively. These findings provide support for the recent introduction of into the New World.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2012.11-0300
2012-05-01
2019-03-27
Loading full text...

Full text loading...

/deliver/fulltext/14761645/86/5/799.html?itemId=/content/journals/10.4269/ajtmh.2012.11-0300&mimeType=html&fmt=ahah

References

  1. Tesh RB, , 1995. Control of zoonotic visceral leishmaniasis: is it time to change strategies? Am J Trop Med Hyg 52: 287292. [Google Scholar]
  2. World Health Organization, 2002. Wkly Epidemiol Rec 77: 365372. [Google Scholar]
  3. Lainson R, Rangel EF, , 2005. Lutzomyia longipalpis and the eco-epidemiology of American visceral leishmaniasis, with particular reference to Brazil: a review. Mem Inst Oswaldo Cruz 100: 811827.[Crossref] [Google Scholar]
  4. Marzochi MC, Marzochi KB, , 1994. Tegumentary and visceral leishmaniases in Brazil: emerging anthropozoonosis and possibilities for their control. Cad Saude Publica 10 (Suppl 2): 359375.[Crossref] [Google Scholar]
  5. Monteiro P, Lacerda M, Arias J, , 1994. Controle da leishmaniose visceral no Brasil. Rev Soc Bras Med Trop 27: 27. [Google Scholar]
  6. Baneth G, Koutinas AF, Solano-Gallego L, Bourdeau P, Ferrer L, , 2008. Canine leishmaniosis—new concepts and insights on an expanding zoonosis: part one. Trends Parasitol 24: 324330.[Crossref] [Google Scholar]
  7. Moreno J, Alvar J, , 2002. Canine leishmaniasis: epidemiological risk and the experimental model. Trends Parasitol 18: 399405.[Crossref] [Google Scholar]
  8. Mauricio IL, Stothard JR, Miles MA, , 2000. The strange case of Leishmania chagasi . Parasitol Today 16: 188189.[Crossref] [Google Scholar]
  9. Hide M, Banuls AL, Tibayrenc M, , 2001. Genetic heterogeneity and phylogenetic status of Leishmania (Leishmania) infantum zymodeme MON-1: epidemiological implications. Parasitology 123: 425432.[Crossref] [Google Scholar]
  10. Kuhls K, Keilonat L, Ochsenreither S, Schaar M, Schweynoch C, Presber W, Schonian G, , 2007. Multilocus microsatellite typing (MLMT) reveals genetically isolated populations between and within the main endemic regions of visceral leishmaniasis. Microbes Infect 9: 334343.[Crossref] [Google Scholar]
  11. Lukes J, Mauricio IL, Schonian G, Dujardin JC, Soteriadou K, Dedet JP, Kuhls K, Tintaya KW, Jirku M, Chocholova E, Haralambous C, Pratlong F, Obornik M, Horak A, Ayala FJ, Miles MA, , 2007. Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proc Natl Acad Sci USA 104: 93759380.[Crossref] [Google Scholar]
  12. Toledo A, Martin-Sanchez J, Pesson B, Sanchiz-Marin C, Morillas-Marquez F, , 2002. Genetic variability within the species Leishmania infantum by RAPD. A lack of correlation with zymodeme structure. Mol Biochem Parasitol 119: 257264.[Crossref] [Google Scholar]
  13. Zemanova E, Jirku M, Mauricio IL, Miles MA, Lukes J, , 2004. Genetic polymorphism within the Leishmania donovani complex: correlation with geographic origin. Am J Trop Med Hyg 70: 613617. [Google Scholar]
  14. Mauricio IL, Howard MK, Stothard JR, Miles MA, , 1999. Genomic diversity in the Leishmania donovani complex. Parasitology 119: 237246.[Crossref] [Google Scholar]
  15. Alonso DP, Costa DL, de Mendonca IL, Costa CH, Ribolla PE, , 2010. Heterogeneity of Leishmania infantum chagasi kinetoplast DNA in Teresina (Brazil). Am J Trop Med Hyg 82: 819821.[Crossref] [Google Scholar]
  16. Segatto M, Ribeiro LS, Costa DL, Costa CH, Oliveira MR, Carvalho SF, Macedo AM, Valadares HM, Dietze R, Brito CF, Lemos EM, , 2011. Genetic diversity of Leishmania infantum field populations from Brazil. Mem Inst Oswaldo Cruz 107: 3947.[Crossref] [Google Scholar]
  17. Kuhls K, Alam MZ, Cupolillo E, Ferreira GE, Mauricio IL, Oddone R, Feliciangeli MD, Wirth T, Miles MA, Schonian G, , 2011. Comparative microsatellite typing of New World Leishmania infantum reveals low heterogeneity among populations and its recent Old World origin. PLoS Negl Trop Dis 5: e1155.[Crossref] [Google Scholar]
  18. Paranhos-Silva M, Freitas LA, Santos WC, Grimaldi GJ, Pontes-de-Carvalho LC, Oliveira-dos-Santos AJ, , 1996. A cross-sectional serodiagnostic survey of canine leishmaniasis due to Leishmania chagasi . Am J Trop Med Hyg 55: 3944. [Google Scholar]
  19. Bio-Manguinhos-Instituto_de_Tecnologia_em_Imunobiológicos, 2004. Imunofluorescência indireta para diagnóstico da leishmaniose visceral canina. Rio de Janeiro, Brasil: FIOCRUZ. [Google Scholar]
  20. Mancianti F, Gramiccia M, Gradoni L, Pieri S, , 1988. Studies on canine leishmaniasis control. 1. Evolution of infection of different clinical forms of canine leishmaniasis following antimonial treatment. Trans R Soc Trop Med Hyg 82: 566567.[Crossref] [Google Scholar]
  21. Ministério_da_Saúde, 2006. Leishmaniose Visceral Grave. Normas e Condutas. Normas e Manuais Técnicos. Série A. Brasília, Brazil: Editora MS. 159. [Google Scholar]
  22. Secretaria_de_Vigilancia_em_Saude, 2003. Manual de vigilancia e controle da leishmaniose visceral. Brasélia, Brazil: Epidemiológica DdV, Ministerio da Saude. [Google Scholar]
  23. Sherlock I, Santos A, , 1964. Visceral leishmaniasis in the region of Jequié, state of Bahia. Rev Bras Malariol Doenças Trop 16: 441448. [Google Scholar]
  24. Silva ES, Oliveira AG, Carvalho FG, Silva EA, Friozi E, Farias R, , 2000. Primeiro relato de leishmaniose visceral canina em área urbana do município de Campo Grande, Mato Grosso do Sul. Proceedings of the XXXVI Congresso Brasileiro de Medicina Tropical, São Luís, Maranhão, Brazil, February 20, 2000. 318.
  25. SINAN_Serviço_de_Vigilância_Epidemiológica, 2009. Prefeitura Municipal de Campo Grande-Coordenadoria de Vigilância em Saúde-Secretaria Municipal de Saúde CG, MS. Campo Grande, Brazil: Prefeitura Municipal de Campo Grande. [Google Scholar]
  26. Melby PC, Tryon VV, Chandrasekar B, Freeman GL, , 1998. Cloning of Syrian hamster (Mesocricetus auratus) cytokine cDNAs and analysis of cytokine mRNA expression in experimental visceral leishmaniasis. Infect Immun 66: 21352142. [Google Scholar]
  27. Medina-Acosta E, Cross GA, , 1993. Rapid isolation of DNA from trypanosomatid protozoa using a simple ‘mini-prep’ procedure. Mol Biochem Parasitol 59: 327329.[Crossref] [Google Scholar]
  28. Zemanova E, Jirku M, Mauricio IL, Horak A, Miles MA, Lukes J, , 2007. The Leishmania donovani complex: genotypes of five metabolic enzymes (ICD, ME, MPI, G6PDH, and FH), new targets for multilocus sequence typing. Int J Parasitol 37: 149160.[Crossref] [Google Scholar]
  29. Schriefer A, Schriefer AL, Goes-Neto A, Guimaraes LH, Carvalho LP, Almeida RP, Machado PR, Lessa HA, de Jesus AR, Riley LW, Carvalho EM, , 2004. Multiclonal Leishmania braziliensis population structure and its clinical implication in a region of endemicity for American tegumentary leishmaniasis. Infect Immun 72: 508514.[Crossref] [Google Scholar]
  30. Ochsenreither S, Kuhls K, Schaar M, Presber W, Schonian G, , 2006. Multilocus microsatellite typing as a new tool for discrimination of Leishmania infantum MON-1 strains. J Clin Microbiol 44: 495503.[Crossref] [Google Scholar]
  31. Minch E, Ruíz-Linares A, Goldstein D, Feldman M, Cavalli-Sforza L, , 1995. MICROSAT, the Microsatellite Distance Program. Stanford, CA: Stanford University Press. [Google Scholar]
  32. Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL, , 1994. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455457.[Crossref] [Google Scholar]
  33. Felsenstein J, , 1996. Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol 266: 418427.[Crossref] [Google Scholar]
  34. Roderic D, , 1996. TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12: 357358. [Google Scholar]
  35. Pritchard JK, Stephens M, Donnelly P, , 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945959. [Google Scholar]
  36. Evanno G, Regnaut S, Goudet J, , 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 26112620.[Crossref] [Google Scholar]
  37. Excoffier L, Laval G, Schneider S, , 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1: 4750. [Google Scholar]
  38. Tajima F, Tokunaga T, Miyashita NT, , 1994. Statistical methods for estimating the effective number of alleles, expected heterozygosity and genetic distance in self-incompatibility locus. Jpn J Genet 69: 287295.[Crossref] [Google Scholar]
  39. Saldanha Machado C, Tereza A, Filipecki P, Teixeira M, , 2009. Current Brazilian law on animal experimentation. Science 324: 16431644.[Crossref] [Google Scholar]
  40. Wright S, , 1978. Variability Within and Among Natural Populations. Evolution and the Genetics of Populations. Chicago, IL: University of Chicago Press. [Google Scholar]
  41. Perez T, Albornoz J, Dominguez A, , 1998. An evaluation of RAPD fragment reproducibility and nature. Mol Ecol 7: 13471357.[Crossref] [Google Scholar]
  42. Rabouam C, Comes AM, Bretagnolle VV, Humbert JF, Periquet G, Bigot Y, , 1999. Features of DNA fragments obtained by random amplified polymorphic DNA (RAPD) assays. Mol Ecol 8: 493503.[Crossref] [Google Scholar]
  43. Banuls AL, Hide M, Tibayrenc M, , 1999. Molecular epidemiology and evolutionary genetics of Leishmania parasites. Int J Parasitol 29: 11371147.[Crossref] [Google Scholar]
  44. Kuhls K, Chicharro C, Canavate C, Cortes S, Campino L, Haralambous C, Soteriadou K, Pratlong F, Dedet JP, Mauricio I, Miles M, Schaar M, Ochsenreither S, Radtke OA, Schonian G, , 2008. Differentiation and gene flow among European populations of Leishmania infantum MON-1. PLoS Negl Trop Dis 2: e261.[Crossref] [Google Scholar]
  45. Botilde Y, Laurent T, Quispe Tintaya W, Chicharro C, Canavate C, Cruz I, Kuhls K, Schonian G, Dujardin JC, , 2006. Comparison of molecular markers for strain typing of Leishmania infantum . Infect Genet Evol 6: 440446.[Crossref] [Google Scholar]
  46. Cortes S, Mauricio I, Almeida A, Cristovao JM, Pratlong F, Dedet JP, Campino L, , 2006. Application of kDNA as a molecular marker to analyse Leishmania infantum diversity in Portugal. Parasitol Int 55: 277283.[Crossref] [Google Scholar]
  47. Laurent T, Rijal S, Yardley V, Croft S, De Doncker S, Decuypere S, Khanal B, Singh R, Schonian G, Kuhls K, Chappuis F, Dujardin JC, , 2007. Epidemiological dynamics of antimonial resistance in Leishmania donovani: genotyping reveals a polyclonal population structure among naturally-resistant clinical isolates from Nepal. Infect Gen Evol 7: 206212.[Crossref] [Google Scholar]
  48. Morales MA, Chicharro C, Ares M, Canavate C, Barker DC, Alvar J, , 2001. Molecular tracking of infections by Leishmania infantum . Trans R Soc Trop Med Hyg 95: 104107.[Crossref] [Google Scholar]
  49. Bhattarai NR, Dujardin JC, Rijal S, De Doncker S, Boelaert M, Van der Auwera G, , 2010. Development and evaluation of different PCR-based typing methods for discrimination of Leishmania donovani isolates from Nepal. Parasitology 137: 947957.[Crossref] [Google Scholar]
  50. Montoya L, Gallego M, Gavignet B, Piarroux R, Rioux JA, Portus M, Fisa R, , 2007. Application of microsatellite genotyping to the study of a restricted Leishmania infantum focus: different genotype compositions in isolates from dogs and sand flies. Am J Trop Med Hyg 76: 888895. [Google Scholar]
  51. Grimaldi G, Jr Tesh RB, McMahon-Pratt D, , 1989. A review of the geographic distribution and epidemiology of leishmaniasis in the New World. Am J Trop Med Hyg 41: 687725. [Google Scholar]
  52. Grisard EC, Steindel M, Shaw JJ, Ishikawa EA, Carvalho-Pinto CJ, Eger-Mangrich I, Toma HK, Lima JH, Romanha AJ, Campbell DA, , 2000. Characterization of Leishmania sp. strains isolated from autochthonous cases of human cutaneous leishmaniasis in Santa Catarina State, southern Brazil. Acta Trop 74: 8993.[Crossref] [Google Scholar]
  53. Travi BL, Velez ID, Brutus L, Segura I, Jaramillo C, Montoya J, , 1990. Lutzomyia evansi, an alternate vector of Leishmania chagasi in a Colombian focus of visceral leishmaniasis. Trans R Soc Trop Med Hyg 84: 676677.[Crossref] [Google Scholar]
  54. Marzochi MC, Marzochi KB, Carvalho RW, , 1994. Visceral leishmaniasis in Rio de Janeiro. Parasitol Today 10: 3740.[Crossref] [Google Scholar]
  55. Belli A, Garcia D, Palacios X, Rodriguez B, Valle S, Videa E, Tinoco E, Marin F, Harris E, , 1999. Widespread atypical cutaneous leishmaniasis caused by Leishmania (L.) chagasi in Nicaragua. Am J Trop Med Hyg 61: 380385. [Google Scholar]
  56. Noyes HA, Arana BA, Chance ML, Maingon R, , 1997. The Leishmania hertigi (Kinetoplastida; Trypanosomatidae) complex and the lizard Leishmania: their classification and evidence for a neotropical origin of the Leishmania-Endotrypanum clade. J Eukaryot Microbiol 44: 511517.[Crossref] [Google Scholar]
  57. Momen H, Pacheco RS, Cupolillo E, Grimaldi Junior G, , 1993. Molecular evidence for the importation of Old World Leishmania into the Americas. Biol Res 26: 249255. [Google Scholar]
  58. Leblois R, Kuhls K, Francois O, Schonian G, Wirth T, , 2011. Guns, germs and dogs: On the origin of Leishmania chagasi . Infect Gen Evol 11: 10911095.[Crossref] [Google Scholar]
  59. Akopyants NS, Kimblin N, Secundino N, Patrick R, Peters N, Lawyer P, Dobson DE, Beverley SM, Sacks DL, , 2009. Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science 324: 265268.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2012.11-0300
Loading
/content/journals/10.4269/ajtmh.2012.11-0300
Loading

Data & Media loading...

  • Received : 10 May 2011
  • Accepted : 03 Feb 2012

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error