1921
Volume 85, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Phytoplankton abundance is inversely related to sea surface temperature (SST). However, a positive relationship is observed between SST and phytoplankton abundance in coastal waters of Bay of Bengal. This has led to an assertion that in a warming climate, rise in SST may increase phytoplankton blooms and, therefore, cholera outbreaks. Here, we explain why a positive SST-phytoplankton relationship exists in the Bay of Bengal and the implications of such a relationship on cholera dynamics. We found clear evidence of two independent physical drivers for phytoplankton abundance. The first one is the widely accepted phytoplankton blooming produced by the upwelling of cold, nutrient-rich deep ocean waters. The second, which explains the Bay of Bengal findings, is coastal phytoplankton blooming during high river discharges with terrestrial nutrients. Causal mechanisms should be understood when associating SST with phytoplankton and subsequent cholera outbreaks in regions where freshwater discharge are a predominant mechanism for phytoplankton production.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2011.11-0181
2011-08-01
2019-05-24
Loading full text...

Full text loading...

/deliver/fulltext/14761645/85/2/303.html?itemId=/content/journals/10.4269/ajtmh.2011.11-0181&mimeType=html&fmt=ahah

References

  1. Colwell RR, Huq A, , 2001. Marine ecosystems and cholera. Hydrobiologia 460: 141145.[Crossref] [Google Scholar]
  2. Reidl J, Klose KE, , 2002. Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol Rev 26: 125139.[Crossref] [Google Scholar]
  3. Lobitz BM, Beck LR, Huq A, Wood B, Fuchs G, Faruque ASG, Colwell RR, , 2000. Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc Natl Acad Sci USA 97: 14381443.[Crossref] [Google Scholar]
  4. Jutla AS, Akanda AS, Islam S, , 2010. Tracking cholera in coastal regions using satellite observations. J Am Water Resour Assoc 46: 651662.[Crossref] [Google Scholar]
  5. Solanki HU, Dwivedi RM, Nayark SR, , 2001. Synergistic analysis of SeaWiFS chlorophyll concentration and NOAA-AVHRR SST feature for exploring marine living resources. Int J Remote Sens 22: 38773882.[Crossref] [Google Scholar]
  6. Davenport R, Neuer S, Helmke P, Perez-Marrero J, Linas O, , 2002. Primary productivity in the northern Canary Islands region as inferred from SeaWiFS imagery. Deep-Sea Res 49: 34813496. [Google Scholar]
  7. Acha EM, Mianzan HW, Guerrero RA, Favero M, Bava J, , 2004. Marine fronts at the continental shelves of austral South America: physical and ecological processes. J Mar Syst 44: 83105.[Crossref] [Google Scholar]
  8. Legaard KL, Thomas AC, , 2006. Spatial patterns in seasonal and interannual variability of chlorophyll and sea surface temperature in the California Current. J Geophys Res 111: C06032.[Crossref] [Google Scholar]
  9. Perez V, Fernandez E, Maranon E, Serret P, Garcia-Soto C, , 2005. Seasonal and interannual variability of chlorophyll a and primary production in the Equatorial Atlantic: in situ and remote sensing observations. J Plankton Res 27: 189197.[Crossref] [Google Scholar]
  10. Jolliff JK, Kindle JC, Penta B, Helber R, Lee Z, Shulman I, Arnone R, Rowley CD, , 2008. On the relationship between satellite-estimated bio-optical and thermal properties in the Gulf of Mexico. J Geol Res 113: G01024.[Crossref] [Google Scholar]
  11. Smyth TJ, Miller PI, Groom SB, Lavender SJ, , 2001. Remote sensing of sea surface temperature and chlorophyll during Lagrangian experiments at the Iberian margin. Prog Oceanogr 51: 269281.[Crossref] [Google Scholar]
  12. Shen S, Leptoukh GG, Acker JG, Yu Z, Kempler SJ, , 2008. Seasonal variations of chlorophyll a concentration in the northern South China Sea. IEEE Geosci Remote Sens Lett 5: 315319.[Crossref] [Google Scholar]
  13. Emch M, Feldacker C, Yunus M, Streatfield PK, Thiem V, Canh D, Mohammad A, , 2008. Local environmental predictors of cholera in Bangladesh and Vietnam. Am J Trop Med Hyg 78: 823832. [Google Scholar]
  14. Magny G, Murtugudde R, Sapianob M, Nizam A, Brown C, Busalacchi A, Yunus M, Nair G, Gil A, Calkins J, Manna B, Rajendran K, Bhattacharya M, Huq A, Sack B, Colwell RR, , 2008. Environmental signatures associated with cholera epidemics. Proc Natl Acad Sci USA 105: 1767617681.[Crossref] [Google Scholar]
  15. Colwell RR, , 1996. Global climate and infectious disease: the cholera paradigm. Science 274: 20252031.[Crossref] [Google Scholar]
  16. Chaturvedi N, , 2005. Variability of chlorophyll concentration in the Arabian Sea and Bay of Bengal as observed from SeaWiFS data from 1997–2000 and its interrelationship with Sea Surface Temperature (SST) derived from NOAA AVHRR. Int J Remote Sens 26: 36953706.[Crossref] [Google Scholar]
  17. Kumari B, Babu KN, , 2009. Provincial nature of chlorophyll and sea surface temperature observed by satellite. Int J Remote Sens 30: 10911097.[Crossref] [Google Scholar]
  18. Dai A, Trenberth KE, , 2002. Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J Hydrometeorol 3: 660687.[Crossref] [Google Scholar]
  19. Smith WO, Jr Demaster DJ, , 1996. Phytoplankton biomass and productivity in the Amazon river plume: correlation with seasonal river discharge. Cont Shelf Res 16: 291319.[Crossref] [Google Scholar]
  20. Acker J.G., Harding L.W., Leptoukh G., Zhu T., Shen S, . 2005 Remotely-sensed chl a at the Chesapeake Bay mouth is correlated with annual freshwater flow to Chesapeake Bay. Geophys. Res. Lett., 32: L05601.[Crossref] [Google Scholar]
  21. Pennock JR, Sharp JH, , 1985. Phytoplankton production in the Delaware Estuary: temporal and spatial variability. Estuar Coast Shelf Sci 21: 711725.[Crossref] [Google Scholar]
  22. Revelante N, Gilmartin M, , 1976. The effect of Po River discharge on phytoplankton dynamics in the Northern Adriatic Sea. Mar Biol 34: 259271.[Crossref] [Google Scholar]
  23. Bidigare RR, Ondrusek M, Brooks J, , 1993. Influence of the Orinoco river outflow on distributions of algal pigments in the Caribbean Sea. J Geophys Res 98: 22592269.[Crossref] [Google Scholar]
  24. Lohrenz SE, Dagg MJ, Whitledge TE, , 1990. Enhanced primary production at the plume/oceanic interface of the Mississippi River. Cont Shelf Res 10: 639664.[Crossref] [Google Scholar]
  25. Barua DK, Kuehl SA, Miller RL, Moore WS, , 1994. Suspended sediment distribution and residual transport in the coastal ocean off of the Ganges Brahmaputra river mouth. Mar Geol 120: 4161.[Crossref] [Google Scholar]
  26. Martin S, , 2004. An Introduction to Ocean Remote Sensing. Cambridge, UK: Cambridge University Press. [Google Scholar]
  27. Uz BM, Yoder JA, , 2004. High frequency and mesoscale variability in SeaWiFS chlorophyll imagery and its relation to other remotely sensed oceanographic variables. Deep Sea Res Part II Top Stud Oceanogr 51: 10011071.[Crossref] [Google Scholar]
  28. McClain CR, Cleave ML, Feldman GC, Gregg WW, Hooker SB, Kurin N, , 1998. Science quality SeaWiFS data for global biosphere research. Sea Technol 39: 1016. [Google Scholar]
  29. O'Reilly JE, Maritorena S, Siegel DA, O'Brien MC, Toole D, Chavez FP, Strutton P, Cota GF, Hooker SB, McClain CR, Carder KL, Muller-Karger F, Harding L, Magnuson A, Phinney D, Moore GF, Aiken J, Arrigo KR, Letelier R, Culver M, O'Reilly J.E., , 2000. Ocean chlorophyll a algorithms for SeaWiFS, OC2, and OC4: Version 4. , and 24 Coauthors. SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3, NASA Tech. Memo. 2000-206892. Volume 11, 919. [Google Scholar]
  30. Gregg WW, Casey NW, , 2004. Global and regional evaluation of the SeaWiFS chlorophyll data set. Remote Sens Environ 93: 463479.[Crossref] [Google Scholar]
  31. Reynolds RW, Smith TM, , 1994. Improved global sea surface temperature analyses using optimum interpolation. J Clim 7: 929948.[Crossref] [Google Scholar]
  32. Longini IM, Jr Yunus M, Zaman K, Siddique AK, Sack RB, Nizam A, , 2002. Epidemic and endemic cholera trends over a 33-year period in Bangladesh. J Infect Dis 186: 246251.[Crossref] [Google Scholar]
  33. Najafi B, Aminian K, Paraschiv-Ionescu A, Loew F, Büla CJ, Robert P, , 2003. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Trans Biomed Eng 50: 711723.[Crossref] [Google Scholar]
  34. Akanda AS, Jutla AS, Siddique AK, Alam M, Sack R, Huq A, Colwell R, Islam S, , 2011. Hydroclimatic influences on seasonal and spatial cholera transmission cycles: implications for public health intervention in the Bengal Delta, Water Resources Research 47: W00H07. doi:10.1029/2010WR009914.[Crossref] [Google Scholar]
  35. Akanda AS, Jutla AS, Islam S, , 2009. Dual peak cholera transmission in Bengal Delta: a hydroclimatological explanation. Geophys Res Lett 36: L19401.[Crossref] [Google Scholar]
  36. Nezlin NP, Li BL, , 2003. Time-series analysis of remote-sensed chlorophyll and environmental factors in the Santa Monica-San Pedro Basin off Southern California. J Mar Syst 39: 185202.[Crossref] [Google Scholar]
  37. Navarro G, Ruiz J, , 2006. Spatial and temporal variability of phytoplankton in the Gulf of Cadiz through remote sensing images. Deep Sea Res Part II Top Stud Oceanogr 53: 12411260.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2011.11-0181
Loading
/content/journals/10.4269/ajtmh.2011.11-0181
Loading

Data & Media loading...

  • Received : 28 Mar 2011
  • Accepted : 15 Apr 2011
  • Published online : 01 Aug 2011

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error