Volume 85, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Despite significant reductions in the overall burden of malaria in the 20th century, this disease still represents a significant public health problem in China, especially in central areas. Understanding the spatio-temporal distribution of malaria is essential in the planning and implementing of effective control measures. In this study, normalized meteorological factors were incorporated in spatio-temporal models. Seven models were established in WinBUGS software by using Bayesian hierarchical models and Markov Chain Monte Carlo methods. , , and modeled separate meteorological factors, and , which modeled rainfall performed better than and , which modeled average temperature and relative humidity, respectively. was the best fitting models on the basis of based on deviance information criterion and predicting errors. The results showed that the way rainfall influencing malaria incidence was different from other factors, which could be interpreted as rainfall having a greater influence than other factors.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 2010. World Malaria Report 2010. Available at: http://whqlibdoc.who.int/publications/2010/9789241564106_eng.pdf. [Google Scholar]
  2. Tang LH, , 2000. Progress in malaria control in China. Chin Med J (Engl) 115: 6992. [Google Scholar]
  3. Zhou SS, Wang Y, Fang W, Tang LH, , 2011. Malaria situation in the People's Republic of China in 2009. Chin J Parasitol and Parasit Dis 27: 13. [Google Scholar]
  4. Warrell DA, Gilles H, , 2002. Essential Malariology. London: Hodder Arnold Press, 85106. [Google Scholar]
  5. Teklehaimanot HD, Lipsitch M, Teklehaimanot A, Schwartz J, , 2004. Weather based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia. I. Patterns of lagged weather effects reflect biological mechanisms. Malar J 3: 41.[Crossref] [Google Scholar]
  6. Van der Hoek W, Konradsen F, Perera D, Amerasinghe PH, Amerasinghe FP, , 1997. Correlation between rainfall and malaria in the dry zone of Sri Lanka. Ann Trop Med Parasitol 91: 945949.[Crossref] [Google Scholar]
  7. Nobre AA, Schmidr AM, Lopes HF, , 2005. Spatio-temporal models for mapping the incidence of malaria in Para. Environmetrics 16: 291304.[Crossref] [Google Scholar]
  8. Smans M, Esteve J, , 1992. Practical Approaches to Disease Mapping Geographical and Environmental Epidemiology: Methods for Small-Area Studies. Oxford, United Kingdom: Oxford University Press, 141150. [Google Scholar]
  9. Wakefield JC, Best NG, Waller LA, , 2000. Spatial Epidemiology: Methods and Applications. Oxford, United Kingdom: Oxford University Press, 104127. [Google Scholar]
  10. Benardinelli L, Clayton D, Montomoli C, Ghislandi M, Songini M, , 1995. Bayesian estimates of disease maps: how important were priors. Stat Med 14: 24112431.[Crossref] [Google Scholar]
  11. Killeen GF, Knols BG, Gu W, , 2003. Taking malaria transmission out of the bottle: implications of mosquito dispersal for vector-control interventions. Lancet Infect Dis 3: 297303.[Crossref] [Google Scholar]
  12. Zhou G, Sirichaisinthop J, Sattabongkot J, Jones J, Bjornstad ON, Yan G, Cui L, , 2005. Spatio-temporal distribution of Plasmodium falciparum and P. vivax malaria in Thailand. Am J Trop Med Hyg 72: 256262. [Google Scholar]
  13. Abeku TA, de Vlas SJ, Borsboom G, Teklehaimanot A, Kebede A, Olana D, van Oortmarssen GJ, Habbema JD, , 2002. Forecasting malaria incidence from historical morbidity patterns in epidemic-prone areas of Ethiopia: a simple seasonal adjustment method performs best. Trop Med Int Health 7: 851857.[Crossref] [Google Scholar]
  14. Hay SI, Were EC, Renshaw M, Noor AM, Ochola SA, Olusanmi I, Alipui N, Snow RW, , 2003. Forecasting, warning, and detection of malaria epidemics: a case study. Lancet 361: 17051706.[Crossref] [Google Scholar]
  15. Thomson M, Indeje M, Connor S, Dilley M, Ward N, , 2003. Malaria early warning in Kenya and seasonal climate forecasts. Lancet 362: 580.[Crossref] [Google Scholar]
  16. Bouma MJ, van der Kaay HJ, , 1996. The El Nino Southern Oscillation and the historic malaria epidemics on the Indian subcontinent and Sri Lanka: an early warning system for future epidemics? Trop Med Int Health 1: 8696.[Crossref] [Google Scholar]
  17. Zhou SS, Huang F, Wang JJ, Zhang SS, Su YP, Tang LH, , 2010. Geographical, meteorological and vectorial factors related to malaria re-emergence in Huang-Huai River of central China. Malar J 9: 337.[Crossref] [Google Scholar]
  18. Malaria Surveillance Project in China, 2005. Beijing: Ministry of Health. [Google Scholar]
  19. China Meteorological Data Sharing Service System. Available at: http://cdc.cma.gov.cn. [Google Scholar]
  20. ARGIS 9.2, 2009. Available at: www.esri.com/software/arcgis/index.html. [Google Scholar]
  21. Craig MH, Kleinschmidt I, Nawn JB, Le Sueur D, Sharp BL, , 2004. Exploring 30 years of malaria case data in KwaZulu-Natal, South Africa: part I. The impact of climatic factors. Trop Med Int Health 9: 12471257.[Crossref] [Google Scholar]
  22. Gill CA, , 1936. Some points in the epidemiology of malaria arising out of the study of the malaria epidemic in Ceylon in 1934–35. Trans R Soc Trop Med Hyg 29: 427466.[Crossref] [Google Scholar]
  23. Mendis C, Gamage Mendis AC, De Zoysa AP, Abhayawardena TA, Carter R, Herath PR, Mendis KN, , 1990. Characteristics of malaria transmission in Kataragama, Sri Lanka: a focus for immune-epidemiological studies. Am J Trop Med Hyg 42: 298308. [Google Scholar]
  24. Lawson AB, , 2008. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology. Boca Raton, FL: CRC Press, 255281.[Crossref] [Google Scholar]
  25. Knorr-Held L, Besag J, , 1998. Modeling risk from a disease in time and space. Stat Med 17: 20452060.[Crossref] [Google Scholar]
  26. Knorr-Held L, Rasser G, , 2000. Bayesian detection of clusters and discontinuities in disease maps. Biometrics 56: 1321.[Crossref] [Google Scholar]
  27. Lawson AB, , 2006. Disease cluster detection: a critique and a Bayesian proposal. Stat Med 25: 897916.[Crossref] [Google Scholar]
  28. Walsh B, , 2004. Markov Chain Monte Carlo and Gibbs Sampling Markov Chain Monte Carlo and Gibbs Sampling Lecture Notes for EEB 581, version 26, April 2004. [Google Scholar]
  29. Zhou XN, , 2009. Spatial Epidemiology. Beijing: Science Press, 236255. [Google Scholar]
  30. Zhu L, Carlin BP, , 2000. Comparing hierarchical models for spatio-temporally misaligned data using the deviance information criterion. Stat Med 19: 22652278.[Crossref] [Google Scholar]
  31. Carter R, , 2002. Spatial simulation of malaria transmission and its control by malaria transmission blocking vaccination. Int J Parasitol 32: 16171624.[Crossref] [Google Scholar]
  32. Okiro EA, Hay SI, Gikandi PW, Sharif SK, Noor AM, Peshu N, Marsh K, Snow RW, , 2007. The decline in paediatric malaria admissions on the coast of Kenya. Malar J 6: 151.[Crossref] [Google Scholar]
  33. O'Meara WP, Mwangi TW, Williams TN, McKenzie FE, Snow RW, Marsh K, , 2008. Relationship between exposure, clinical malaria, and age in an area of changing transmission intensity. Am J Trop Med Hyg 79: 185191. [Google Scholar]
  34. Besag J, York J, Molli'e A, , 1991. Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 43: 159.[Crossref] [Google Scholar]
  35. The Global Fund to Fight AIDS, Tuberculosis and Malaria. Available at: http://www.theglobalfund.org/en/. [Google Scholar]
  36. Climate Change and Malaria Risk: Complexity and Scaling. Available at: http://edepot.wur.nl/119287. [Google Scholar]

Data & Media loading...

  • Received : 20 Mar 2011
  • Accepted : 06 Jun 2011
  • Published online : 01 Sep 2011

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error