1921
Volume 84, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

The aim of this study was to obtain data on susceptibility patterns of pathogens responsible for both community and hospital urinary tract infections (UTIs); and analyzed risk factors for infection caused by ciprofloxacin-resistant and extended-spectrum β-lactamace (ESBL)-producing strains in Rwanda. Of 1,012 urine cultures prospectively studied, a total of 196 (19.3%) yielded significant growth of a single organism. The most common isolate (60.7%) was . The antibiotics commonly used in UTIs are less effective except Fosfomycin-trometamol and imipinem. The use of ciprofloxacin in the previous 6 months (odds ratio [OR] = 7.59 [1.75–32.74]), use of other antibiotics in the previous 6 months (OR = 1.02 [1.02–2.34]), and production of ESBL (OR = 19.32 [2.62–142.16]) were found to be associated with ciprofloxacin resistance among the isolates. Risk factors for ESBL positivity were the use of ciprofloxacin and third-generation cephalosporin in the preceding 6 months (OR = 3.05 [1.42–6.58] and OR = 9.78 [2.71–35.25], respectively); and being an inpatient (OR = 2.27 [1.79–2.89]). Fosfomycin-trometamol could be included as a reasonable alternative for the therapy of uncomplicated UTI in Rwanda.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2011.11-0057
2011-06-01
2020-07-16
Loading full text...

Full text loading...

/deliver/fulltext/14761645/84/6/923.html?itemId=/content/journals/10.4269/ajtmh.2011.11-0057&mimeType=html&fmt=ahah

References

  1. Smith RD, Coast J, 2002. Antimicrobial resistance: a global response. Bull World Health Organ 80: 126133.
    [Google Scholar]
  2. Warren JW, Abrutyn E, Hebel JR, Johnson JR, Schaeffer AJ, Stamm WE, 1999. Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women. Infectious Diseases Society of America (IDSA). Clin Infect Dis 29: 745758.[Crossref]
    [Google Scholar]
  3. Echols RM, Tosiello RL, Haverstock DC, Tice AD, 1999. Demographic, clinical, and treatment parameters influencing the outcome of acute cystitis. Clin Infect Dis 29: 113119.[Crossref]
    [Google Scholar]
  4. Kahlmeter G, Menday P, 2003. Cross-resistance and associated resistance in 2478 Escherichia coli isolates from the Pan-European ECO.SENS Project surveying the antimicrobial susceptibility of pathogens from uncomplicated urinary tract infections. J Antimicrob Chemother 52: 128131.[Crossref]
    [Google Scholar]
  5. Zhanel GG, Hisanaga TL, Laing NM, DeCorby MR, Nichol KA, Weshnoweski B, Johnson J, Noreddin A, Low DE, Karlowsky JA, Hoban DJ, 2006. Antibiotic resistance in Escherichia coli outpatient urinary isolates: final results from the North American Urinary Tract Infection Collaborative Alliance (NAUTICA). Int J Antimicrob Agents 27: 468475.[Crossref]
    [Google Scholar]
  6. Gupta K, Scholes D, Stamm WE, 1999. Increasing prevalence of antimicrobial resistance among uropathogens causing acute uncomplicated cystitis in women. JAMA 281: 736738.[Crossref]
    [Google Scholar]
  7. Alos JI, Serrano MG, Gomez-Garces JL, Perianes J, 2005. Antibiotic resistance of Escherichia coli from community-acquired urinary tract infections in relation to demographic and clinical data. Clin Microbiol Infect 11: 199203.[Crossref]
    [Google Scholar]
  8. Kahlmeter G, 2003. An international survey of the antimicrobial susceptibility of pathogens from uncomplicated urinary tract infections: the ECO.SENS Project. J Antimicrob Chemother 51: 6976.[Crossref]
    [Google Scholar]
  9. Nicoletti J, Kuster SP, Sulser T, Zbinden R, Ruef C, Ledergerber B, Weber R, 2010. Risk factors for urinary tract infections due to ciprofloxacin-resistant Escherichia coli in a tertiary care urology department in Switzerland. Swiss Med Wkly 140: w13059.
    [Google Scholar]
  10. Bush K, Jacoby GA, Medeiros AA, 1995. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39: 12111233.[Crossref]
    [Google Scholar]
  11. Jacoby GA, Munoz-Price LS, 2005. The new beta-lactamases. N Engl J Med 352: 380391.[Crossref]
    [Google Scholar]
  12. Goossens H, Ferech M, Vander Stichele R, Elseviers M, 2005. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 365: 579587.[Crossref]
    [Google Scholar]
  13. Dromigny JA, Nabeth P, Juergens-Behr A, Perrier-Gros-Claude JD, 2005. Risk factors for antibiotic-resistant Escherichia coli isolated from community-acquired urinary tract infections in Dakar, Senegal. J Antimicrob Chemother 56: 236239.[Crossref]
    [Google Scholar]
  14. Clinical and Laboratory Standards Institute, 2008. Performance Standards for Antimicrobial Susceptibility Testing: Eighteenth Informational Supplement 100-S18. Wayne, PA: Clinical and Laboratory Standards Institute.
    [Google Scholar]
  15. Raka L, Mulliqi-Osmani G, Berisha L, Begolli L, Omeragiq S, Parsons L, Salfinger M, Jaka A, Kurti A, Jakupi X, 2004. Etiology and susceptibility of urinary tract isolates in Kosova. Int J Antimicrob Agents 23 (Suppl 1): S2S5.[Crossref]
    [Google Scholar]
  16. Randrianirina F, Soares JL, Carod JF, Ratsima E, Thonnier V, Combe P, Grosjean P, Talarmin A, 2007. Antimicrobial resistance among uropathogens that cause community-acquired urinary tract infections in Antananarivo, Madagascar. J Antimicrob Chemother 59: 309312.[Crossref]
    [Google Scholar]
  17. Akram M, Shahid M, Khan AU, 2007. Etiology and antibiotic resistance patterns of community-acquired urinary tract infections in J N M C Hospital Aligarh, India. Ann Clin Microbiol Antimicrob 6: 4.[Crossref]
    [Google Scholar]
  18. Andrade SS, Sader HS, Jones RN, Pereira AS, Pignatari AC, Gales AC, 2006. Increased resistance to first-line agents among bacterial pathogens isolated from urinary tract infections in Latin America: time for local guidelines? Mem Inst Oswaldo Cruz 101: 741748.
    [Google Scholar]
  19. Schaeffer AJ, Rajan N, Cao Q, Anderson BE, Pruden DL, Sensibar J, Duncan JL, 2001. Host pathogenesis in urinary tract infections. Int J Antimicrob Agents 17: 245251.[Crossref]
    [Google Scholar]
  20. Hryniewicz K, Szczypa K, Sulikowska A, Jankowski K, Betlejewska K, Hryniewicz W, 2001. Antibiotic susceptibility of bacterial strains isolated from urinary tract infections in Poland. J Antimicrob Chemother 47: 773780.[Crossref]
    [Google Scholar]
  21. Arslan H, Azap OK, Ergonul O, Timurkaynak F, 2005. Risk factors for ciprofloxacin resistance among Escherichia coli strains isolated from community-acquired urinary tract infections in Turkey. J Antimicrob Chemother 56: 914918.[Crossref]
    [Google Scholar]
  22. Karlowsky JA, Kelly LJ, Thornsberry C, Jones ME, Sahm DF, 2002. Trends in antimicrobial resistance among urinary tract infection isolates of Escherichia coli from female outpatients in the United States. Antimicrob Agents Chemother 46: 25402545.[Crossref]
    [Google Scholar]
  23. Aboderin OA, Abdu AR, Odetoyin BW, Lamikanra A, 2009. Antimicrobial resistance in Escherichia coli strains from urinary tract infections. J Natl Med Assoc 101: 12681273.[Crossref]
    [Google Scholar]
  24. Goettsch W, van Pelt W, Nagelkerke N, Hendrix MG, Buiting AG, Petit PL, Sabbe LJ, van Griethuysen AJ, de Neeling AJ, 2000. Increasing resistance to fluoroquinolones in Escherichia coli from urinary tract infections in The Netherlands. J Antimicrob Chemother 46: 223228.[Crossref]
    [Google Scholar]
  25. Hooton TM, 2003. Fluoroquinolones and resistance in the treatment of uncomplicated urinary tract infection. Int J Antimicrob Agents 22 (Suppl 2): 6572.[Crossref]
    [Google Scholar]
  26. Schito GC, 2003. Why fosfomycin trometamol as first line therapy for uncomplicated UTI? Int J Antimicrob Agents 22 (Suppl 2): 7983.[Crossref]
    [Google Scholar]
  27. Ullah F, Malik SA, Ahmed J, 2009. Antimicrobial susceptibility and ESBL prevalence in Pseudomonas aeruginosa isolated from burn patients in the north west of Pakistan. Burns 35: 10201025.[Crossref]
    [Google Scholar]
  28. Lobel B, 2003. Short term therapy for uncomplicated urinary tract infection today. Clinical outcome upholds the theories. Int J Antimicrob Agents 22 (Suppl 2): 8587.[Crossref]
    [Google Scholar]
  29. Sire JM, Nabeth P, Perrier-Gros-Claude JD, Bahsoun I, Siby T, Macondo EA, Gaye-Diallo A, Guyomard S, Seck A, Breurec S, Garin B, 2007. Antimicrobial resistance in outpatient Escherichia coli urinary isolates in Dakar, Senegal. J Infect Dev Ctries 1: 263268.
    [Google Scholar]
  30. Howard AJ, Magee JT, Fitzgerald KA, Dunstan FD, 2001. Factors associated with antibiotic resistance in coliform organisms from community urinary tract infection in Wales. J Antimicrob Chemother 47: 305313.[Crossref]
    [Google Scholar]
  31. Paterson DL, Bonomo RA, 2005. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18: 657686.[Crossref]
    [Google Scholar]
  32. Reinert RR, Low DE, Rossi F, Zhang X, Wattal C, Dowzicky MJ, 2007. Antimicrobial susceptibility among organisms from the Asia/Pacific Rim, Europe and Latin and North America collected as part of TEST and the in vitro activity of tigecycline. J Antimicrob Chemother 60: 10181029.[Crossref]
    [Google Scholar]
  33. Mulvey MR, Bryce E, Boyd D, Ofner-Agostini M, Christianson S, Simor AE, Paton S, 2004. Ambler class A extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp. in Canadian hospitals. Antimicrob Agents Chemother 48: 12041214.[Crossref]
    [Google Scholar]
  34. Nijssen S, Florijn A, Bonten MJ, Schmitz FJ, Verhoef J, Fluit AC, 2004. Beta-lactam susceptibilities and prevalence of ESBL-producing isolates among more than 5000 European Enterobacteriaceae isolates. Int J Antimicrob Agents 24: 585591.[Crossref]
    [Google Scholar]
  35. Smaoui H, Mahjoubi F, Boutiba I, Jouaihia W, Thabet L, Znazen A, Kammoun A, Mezghanni S, Triki O, Hammami A, Ben Hassen A, Kechrid A, Ben Redjeb S, 2003. Antibiotic resistance among E. coli isolates from urinary tract infections (1999–2000): a multicenter study. Tunis Med 81: 390394.
    [Google Scholar]
  36. Edelstein M, Pimkin M, Palagin I, Edelstein I, Stratchounski L, 2003. Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob Agents Chemother 47: 37243732.[Crossref]
    [Google Scholar]
  37. Gangoue-Pieboji J, Bedenic B, Koulla-Shiro S, Randegger C, Adiogo D, Ngassam P, Ndumbe P, Hachler H, 2005. Extended-spectrum-beta-lactamase-producing Enterobacteriaceae in Yaounde, Cameroon. J Clin Microbiol 43: 32733277.[Crossref]
    [Google Scholar]
  38. Ryoo NH, Kim EC, Hong SG, Park YJ, Lee K, Bae IK, Song EH, Jeong SH, 2005. Dissemination of SHV-12 and CTX-M-type extended-spectrum beta-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J Antimicrob Chemother 56: 698702.[Crossref]
    [Google Scholar]
  39. Skippen I, Shemko M, Turton J, Kaufmann ME, Palmer C, Shetty N, 2006. Epidemiology of infections caused by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp.: a nested case-control study from a tertiary hospital in London. J Hosp Infect 64: 115123.[Crossref]
    [Google Scholar]
  40. Yilmaz E, Akalin H, Ozbey S, Kordan Y, Sinirtas M, Gurcuoglu E, Ozakin C, Heper Y, Mistik R, Helvaci S, 2008. Risk factors in community-acquired/onset urinary tract infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae . J Chemother 20: 581585.[Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2011.11-0057
Loading
/content/journals/10.4269/ajtmh.2011.11-0057
Loading

Data & Media loading...

  • Received : 28 Jan 2011
  • Accepted : 23 Feb 2011
  • Published online : 01 Jun 2011
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error