Volume 85, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



The mosquito-transmitted pathogen West Nile virus (WNV) is not yet present in the Galápagos Archipelago of Ecuador. However, concern exists for fragile endemic island fauna after population decreases in several North American bird species and pathology in certain reptiles. We examined WNV vector competency of a Galápagos strain of mosquito ( Say). Field specimens were tested for their capacity to transmit the WN02-1956 strain of WNV after incubation at 27°C or 30°C. Rates of infection, dissemination, and transmission all increased with days post-exposure to WNV, and the highest rates were observed at 28 days. Infection rates peaked at 59% and transmission rates peaked at 44% (of mosquitoes tested). Vector efficiency increased after day 14. Rates of infection but not of transmission were significantly influence by temperature. No vertical transmission was detectable. We demonstrate that Galápagos are competent WNV vectors, and therefore should be considered an animal and public health risk for the islands and controlled wherever possible.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Kramer LD, Styer LM, Ebel GD, , 2008. A global perspective on the epidemiology of West Nile virus. Annu Rev Entomol 53: 6181.[Crossref] [Google Scholar]
  2. Dupuis AP, Marra PP, Reitsma R, Jones MJ, Louie KL, Kramer LD, , 2005. Short report: serologic evidence for West Nile virus transmission in Puerto Rico and Cuba. Am J Trop Med Hyg 73: 474476. [Google Scholar]
  3. Komar N, Clark GG, , 2006. West Nile virus activity in Latin America and the Caribbean. Rev Panam Salud Publica–Pan American J Public Health 19: 112117.[Crossref] [Google Scholar]
  4. Mattar S, Edwards E, Laguado J, Gonzalez M, Alvarez J, Komar N, , 2005. West Nile Virus antibodies in Colombian horses. Emerg Infect Dis 11: 14971498.[Crossref] [Google Scholar]
  5. Morales MA, Barrandeguy M, Fabbri C, Garcia JB, Vissani A, Trono K, Gutierrez G, Pigretti S, Menchaca H, Garrido N, Taylor N, Fernandez F, Levis S, Enria D, , 2006. West Nile virus isolation from equines in Argentina, 2006. Emerg Infect Dis 12: 15591561.[Crossref] [Google Scholar]
  6. Bosch I, Herrera F, Navarro JC, Lentino M, Dupuis A, Maffei J, Jones M, Fernandez E, Perez N, Perez-Eman J, Guimaraes AE, Barrera R, Valero N, Ruiz J, Velasquez G, Martinez J, Comach G, Komar N, Spielman A, Kramer L, , 2007. West Nile virus, Venezuela. Emerg Infect Dis 13: 651653.[Crossref] [Google Scholar]
  7. Invasive Species in Galapagos Carrion V, , 2009. , Conservation and Sustainable Development. Available at: www.galapagoapark.org [Google Scholar]
  8. UNESCO: United Nations Educational Scientific and Cultural Organization, 2010. Galápagos Islands. World Heritage List. Available at: http://whc.unesco.org/en/list/1. [Google Scholar]
  9. Thiel T, Whiteman NK, Tirape A, Baquero MI, Cedeno V, Walsh T, Uzcategui GJ, Parker PG, , 2005. Characterization of canarypox-like viruses infecting endemic birds in the Galápagos Islands. J Wildl Dis 41: 342353.[Crossref] [Google Scholar]
  10. Padilla LR, Santiago-Alarcon D, Merkel J, Miller RE, Parker PG, , 2004. Survey for Haemoproteus spp., Trichomonas gallinae, Chlamydophila psittaci, and Salmonella spp. in Galápagos Islands Columbiformes. J Zoo Wildl Med 35: 6064.[Crossref] [Google Scholar]
  11. Daszak P, Cunningham AA, Hyatt AD, , 2000. Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287: 443449.[Crossref] [Google Scholar]
  12. Wikelski M, Foufopoulos J, Vargas H, Snell H, , 2004. Galápagos birds and diseases: invasive pathogens as threats for island species. Ecology and Sociery 9: 5.[Crossref] [Google Scholar]
  13. Briese T, Bernard KA, , 2005. West Nile virus: an old virus learning new tricks? J Neurovirol 11: 469475.[Crossref] [Google Scholar]
  14. Centers for Disease Control and Prevention, 2009. Bird Species: Vertebrate Ecology. West Nile Virus Activity. Bird Species Reported to CDCs West Nile Virus Avian Mortality Database from 1999–Present. Atlanta: Division of Vector Borne Infectious Diseases, Centers for Disease Control and Prevention. [Google Scholar]
  15. LaDeau SL, Kilpatrick AM, Marra PP, , 2007. West Nile virus emergence and large-scale declines of North American bird populations. Nature 447: 710713.[Crossref] [Google Scholar]
  16. Kilpatrick AM, LaDeau SL, Marra PP, , 2007. Ecology of West Nile virus transmission and its impact on birds in the western hemisphere. Auk 124: 11211136.[Crossref] [Google Scholar]
  17. Peterson AT, Komar N, Komar O, , 2004. Priority contribution West Nile virus in the New World: potential impacts on bird species. Bird Conserv Int 14: 215232.[Crossref] [Google Scholar]
  18. Kilpatrick AM, Daszak P, Goodman SJ, Rogg H, Kramer LD, Cedeno V, Cunningham AA, , 2006. Predicting pathogen introduction: West Nile virus spread to Galápagos. Conserv Biol 20: 12241231.[Crossref] [Google Scholar]
  19. Causton C, Peck SB, Sinclair BJ, Roque-Albelo L, Hodgson CJ, Landrye B, , 2006. Alien insects: threats and implications for conservation of Galápagos Islands. Ann Entomol Soc Am 99: 121143.[Crossref] [Google Scholar]
  20. Bataille A, Cunningham AA, Cedeño V, Cruz M, Eastwood G, Fonseca DM, Causton CE, Azuero R, Loayza J, Martinez JD, Goodman SJ, , 2009. Evidence for regular ongoing introductions of mosquito disease vectors into the Galápagos Islands. Proc Biol Sci 276: 37693775.[Crossref] [Google Scholar]
  21. Centers for Disease Control and Prevention, 2007. West Nile virus activity – United States, 2006. MMWR Morb Mortal Wkly Rep 56: 556559. [Google Scholar]
  22. Bataille A, Cunningham AA, Cedeno V, Patino L, Constantinou A, Kramer LD, Goodman SJ, , 2009. Natural colonization and adaptation of a mosquito species in Galápagos and its implications for disease threats to endemic wildlife. Proc Natl Acad Sci USA 106: 1023010235.[Crossref] [Google Scholar]
  23. Whiteman NK, Goodman SJ, Sinclair BJ, Walsh T, Cunningham AA, Kramer LD, Parker PG, , 2005. Establishment of the avian disease vector Culex quinquefasciatus Say, 1823 (Diptera: Culicidae) on the Galápagos Islands, Ecuador. Ibis 147: 844847.[Crossref] [Google Scholar]
  24. Gratz NG, Steffen R, Cocksedge W, , 2000. Why aircraft disinsection? Bull World Health Organ 78: 9951004. [Google Scholar]
  25. Keyghobadi N, LaPointe D, Fleischer RC, Fonseca DM, , 2006. Fine-scale population genetic structure of a wildlife disease vector: the southern house mosquito on the island of Hawaii. Mol Ecol 15: 39193930.[Crossref] [Google Scholar]
  26. LaPointe DA, Hofmeister EK, Atkinson CT, Porter RE, Dusek RJ, , 2009. Experimental infection of Hawai`I `Amakihi (Hemignathus virens) with West Nile virus and competence of a co-occurring vector, Culex quinquefasciatus: potential impacts on endemic Hawaiian avifauna. J Wildl Dis 45: 257271.[Crossref] [Google Scholar]
  27. Reisen WK, Meyer RP, Milby MM, Presser SB, Emmons RW, Hardy JL, Reeves WC, , 1992. Ecological observations on the 1989 Outbreak of St. Louis Encephalitis virus in the southern San Joaquin Valley of California. J Med Entomol 29: 472482.[Crossref] [Google Scholar]
  28. Molaei G, Andreadis TG, Armstrong PM, Bueno R, Dennett JA, Real SV, Sargent C, Bala A, Randle Y, Guzman H, da Rosa AT, Wuithiranyagool T, Tesh RB, , 2007. Host feeding pattern of Culex quinquefasciatus (Diptera: Culicidae) and its role in transmission of West Nile virus in Harris County, Texas. Am J Trop Med Hyg 77: 7381. [Google Scholar]
  29. Tempelis DH, , 1974. Host-feeding patterns of mosquitoes, with a review of advances in analysis of blood meals by serology. J Med Entomol 11: 635653.[Crossref] [Google Scholar]
  30. Anderson SL, Richards SL, Tabachnick WJ, Smartt CT, , 2010. Effects of West Nile virus dose and extrinsic incubation temperature on temporal progression of vector competence in Culex pipiens quinquefasciatus . J Am Mosq Control Assoc 26: 103107.[Crossref] [Google Scholar]
  31. Tempelis CH, Hayes RO, Hess AD, Reeves WC, , 1970. Blood-feeding habits of 4 species of mosquito found in Hawaii. Am J Trop Med Hyg 19: 335. [Google Scholar]
  32. Vaidyanathan R, Scott TW, , 2007. Geographic variation in vector competence for West Nile virus in the Culex pipiens (Diptera: Culicidae) complex in California. Vector Borne Zoonotic Dis 7: 193198.[Crossref] [Google Scholar]
  33. Sardelis MR, Turell MJ, Dohm DJ, O'Guinn ML, , 2001. Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus. Emerg Infect Dis 7: 10181022.[Crossref] [Google Scholar]
  34. Goddard LB, Roth AE, Reisen WK, Scott TW, , 2002. Vector competence of California mosquitoes for West Nile virus. Emerg Infect Dis 8: 13851391.[Crossref] [Google Scholar]
  35. Vanlandingham DL, McGee C, Klinger KA, Vessey N, Fredregillo C, Higgs S, , 2007. Short report: relative susceptibilities of south Texas mosquitoes to infection with West Nile virus. Am J Trop Med Hyg 77: 925928. [Google Scholar]
  36. Kilpatrick AM, Meola MA, Moudy RM, Kramer LD, , 2008. Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathog 4: e1000092, doi: 10.1371/journal.ppat.1000092.[Crossref] [Google Scholar]
  37. Jupp PG, , 1974. Laboratory Studies on Transmission of West Nile Virus by Culex (Culex) univittatus Theobald- Factors influencing transmission rate. J Med Entomol 11: 455458.[Crossref] [Google Scholar]
  38. Tabachnick WJ, , 2010. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world. J Exp Biol 213: 946954.[Crossref] [Google Scholar]
  39. Richards S, Mores CN, Lord CC, Tabachnick WJ, , 2007. Impact of extrinsic incubation temperature and virus exposure on vector competence of Culex pipiens quinquefasciatus Say (Diptera: Culicidae) for West Nile virus. Vector Borne Zoonotic Dis 7: 629636.[Crossref] [Google Scholar]
  40. Jansen CC, Cameron E, Northill JA, Ritchie SA, Russell RC, Van Den Hurk AF, , 2008. Vector competence of Australian mosquito species for a North American strain of West Nile virus. Vector Borne Zoonotic Dis 8: 805811.[Crossref] [Google Scholar]
  41. Kilpatrick AM, Ebel GD, Fonseca DM, Kramer LD, , 2010. Spatial and temporal variation in vector competence of Culex pipiens and Cx. restuans mosquitoes for West Nile virus. Am J Trop Med Hyg 83: 607613.[Crossref] [Google Scholar]
  42. Goddard LB, Roth AE, Reisen WK, Scott TW, , 2003. Vertical transmission of West Nile virus by three California Culex (Diptera: Culicidae) species. J Med Entomol 40: 743746.[Crossref] [Google Scholar]
  43. Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M, , 2003. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9: 311322.[Crossref] [Google Scholar]
  44. Moudy RM, Meola MA, Morin LLL, Ebel GD, Kramer LD, , 2007. A newly emergent genotype of west Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. Am J Trop Med Hyg 77: 365370. [Google Scholar]
  45. Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P, , 2006. Seasonality and the dynamics of infectious diseases. Ecol Lett 9: 467484.[Crossref] [Google Scholar]
  46. Ebel GD, Rochlin I, Longacker J, Kramer LD, , 2005. Culex restuans (Diptera: Culicidae) relative abundance and vector competence for West Nile virus. J Med Entomol 42: 838843.[Crossref] [Google Scholar]
  47. Aitken THG, , 1977. An in vitro feeding technique for artificially demonstrating virus transmission by mosquitos. Mosq News 37: 130133. [Google Scholar]
  48. Payne AF, Binduga-Gajewska I, Kauffman EB, Kramer LD, , 2006. Quantitation of flaviviruses by fluorescent focus assay. J Virol Methods 134: 183189.[Crossref] [Google Scholar]
  49. Gunay F, Alten B, Ozsoy ED, , 2010. Estimating reaction norms for predictive population parameters, age specific mortality, and mean longevity in temperature-dependent cohorts of Culex quinquefasciatus Say (Diptera: Culicidae). J Vector Ecol 35: 354362.[Crossref] [Google Scholar]
  50. Unlu I, Mackay AJ, Roy A, Yates MM, Foil LD, , 2010. Evidence of vertical transmission of West Nile virus in field-collected mosquitoes. J Vector Ecol 5: 9599.[Crossref] [Google Scholar]
  51. Fonseca DM, Smith JL, Wilkerson RC, Fleischer RC, , 2006. Pathways of expansion and multiple introductions illustrated by large genetic differentiation among worldwide populations of the southern house mosquito. Am J Trop Med Hyg 74: 284289. [Google Scholar]
  52. Kutz SJ, Hoberg EP, Polley L, Jenkins EJ, , 2005. Global warming is changing the dynamics of Arctic host-parasite systems. Proc Biol Sci 272: 25712576.[Crossref] [Google Scholar]
  53. Styer LM, Kent KA, Albright RG, Bennett CJ, Kramer LD, Bernard KA, , 2007. Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathog 3: 12621270.[Crossref] [Google Scholar]
  54. Nemeth N, Gould D, Bowen R, Komar N, , 2006. Natural and experimental West Nile virus infection in five raptor species. J Wildl Dis 42: 113.[Crossref] [Google Scholar]
  55. Fang Y, Reisen WK, , 2006. Previous infection with West Nile or St. Louis encephalitis viruses provides cross protection during reinfection in house finches. Am J Trop Med Hyg 75: 480485. [Google Scholar]
  56. Garcia-Rejon JE, Blitvich BJ, Farfan-Ale JA, Lorono-Pino MA, Chi Chim WA, Flores-Flores LF, Rosado-Paredes E, Baak-Baak C, Perez-Mutul J, Suarez-Solis V, Fernandez-Salas I, Beaty B, , 2010. Host-feeing preference of the mosquito, Culex quinquefasciatus, in Yucatan State, Mexico. J Insect Sci 10: 112.[Crossref] [Google Scholar]
  57. Zinser M, Ramberg F, Willot E, , 2004. Culex quinquefasciatus (Diptera: Culicidae) as a potential West Nile virus vector in Tucson, Arizona: blood meal analysis indicates feeding on both humans and birds. J Insect Sci 4: 2022.[Crossref] [Google Scholar]
  58. Hribar LJ, Stark LM, Stoner RL, Demay DJ, Nordholt AL, Hemmen MJ, Vlach JJ, Fussell EM, , 2004. Isolation of West Nile virus from mosquitoes (Diptera: Culicidae) in the Florida Keys, Monroe County, Florida. Caribb J Sci 40: 362367. [Google Scholar]
  59. Turell MJ, O'Guinn ML, Dohm DJ, Jones JW, , 2001. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol 38: 130134.[Crossref] [Google Scholar]
  60. Komar N, , 2003. West Nile virus: epidemiology and ecology in North America. Adv Virus Res 61: 185234.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 31 Dec 2010
  • Accepted : 09 May 2011
  • Published online : 01 Sep 2011

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error