Volume 84, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



In the United States, tickborne diseases occur focally. Missouri represents a major focus of several tickborne diseases that includes spotted fever rickettsiosis, tularemia, and ehrlichiosis. Our study sought to determine the potential risk of human exposure to human-biting vector ticks in this area. We collected ticks in 79 sites in southern Missouri during June 7–10, 2009, which yielded 1,047 adult and 3,585 nymphal , 5 adult , 19 adult , and 5 nymphal . Logistic regression analysis showed that areas posing an elevated risk of exposure to nymphs or adults were more likely to be classified as forested than grassland, and the probability of being classified as elevated risk increased with increasing relative humidity during the month of June (30-year average). Overall accuracy of each of the two models was greater than 70% and showed that 20% and 30% of the state were classified as elevated risk for human exposure to nymphs and adults, respectively. We also found a significant positive association between heightened acarologic risk and counties reporting tularemia cases. Our study provides an updated distribution map for in Missouri and suggests a wide-spread risk of human exposure to and their associated pathogens in this region.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Anderson JF, Magnarelli LA, , 2008. Biology of ticks. Infect Dis Clin North Am 22: 195215.[Crossref] [Google Scholar]
  2. Hall-Baker PA, Enrique Nieves J, Jajosky RA, Adams DA, Sharp P, Anderson WJ, Aponte JJ, Jones GF, Aranas AE, Rey A, Lane B, Wodajo MS, , 2009. Summary of notifiable diseases—United States, 2007. MMWR Morbid Mortal Wkly Rep 56: 194. [Google Scholar]
  3. Bacon RM, Kugeler KJ, Mead PS, , 2008. Surveillance for Lyme disease—United States, 1992–2006. MMWR Morb Mortal Wkly Rep 57: 19. [Google Scholar]
  4. Eisen RJ, Eisen L, , 2008. Spatial modeling of human risk of exposure to vector-borne pathogens based on epidemiological versus arthropod vector data. J Med Entomol 45: 181192.[Crossref] [Google Scholar]
  5. Diuk-Wasser MA, Gatewood AG, Cortinas MR, Yaremych-Hamer S, Tsao J, Kitron U, Hickling G, Brownstein JS, Walker E, Piesman J, Fish D, , 2006. Spatiotemporal patterns of host-seeking Ixodes scapularis nymphs (Acari: Iodidae) in the United States. J Med Entomol 43: 166176.[Crossref] [Google Scholar]
  6. Eisen RJ, Lane RS, Fritz CL, Eisen L, , 2006. Spatial patterns of Lyme disease risk in California based on disease incidence data and modeling of vector-tick exposure. Am J Trop Med Hyg 75: 669676. [Google Scholar]
  7. Randolph SE, , 2004. Tick ecology: processes and patterns behind the epidemiological risk posed by ixodid ticks as vectors. Parasitology 129: S37S65.[Crossref] [Google Scholar]
  8. Eisen L, , 2007. A call for renewed research on tick-borne Francisella tularensis in the Arkansas-Missouri primary national focus of tularemia in humans. J Med Entomol 44: 389397.[Crossref] [Google Scholar]
  9. Centers for Disease Control and Prevention, 2002. Tularemia–United States, 1990–2000. MMWR Morb Mortal Wkly Rep 51: 181184. [Google Scholar]
  10. Petersen JM, Mead PS, Schriefer ME, , 2009. Francisella tularensis: an arthropod-borne pathogen. Vet Res 40: 7.[Crossref] [Google Scholar]
  11. Spach DH, Liles WC, Campbell GL, Quick RE, Anderson DE, Fritsche TR, , 1993. Tick-borne diseases in the United-States. N Engl J Med 329: 936947.[Crossref] [Google Scholar]
  12. Farlow J, Wagner DM, Dukerich M, Stanley M, Chu M, Kubota K, Petersen J, Keim P, , 2005. Francisella tularensis in the United States. Emerg Infect Dis 11: 18351841.[Crossref] [Google Scholar]
  13. Hair JA, Howell DE, , 1970. Lone star ticks: their biology and control in Ozark recreation areas. Oklahoma State University Agricultural Experiment Station Bulletin B-679: 347. [Google Scholar]
  14. Hopla CE, , 1960. The transmission of tularemia organisms by ticks in the southern states. South Med J 53: 9297.[Crossref] [Google Scholar]
  15. Taylor JP, Istre GR, Mcchesney TC, Satalowich FT, Parker RL, Mcfarland LM, , 1991. Epidemiologic characteristics of human tularemia in the southwest-central states, 1981–1987. Am J Epidemiol 133: 10321038.[Crossref] [Google Scholar]
  16. Washburn AM, Tuohy JH, , 1949. The changing picture of tularemia transmission in Arkansas; a study of 704 case histories. South Med J 42: 6062.[Crossref] [Google Scholar]
  17. Eisen RJ, Mead PS, Meyer AM, Pfaff LE, Bradley KK, Eisen L, , 2008. Ecoepidemiology of tularemia in the southcentral United States. Am J Trop Med Hyg 78: 847847. [Google Scholar]
  18. Dennis DT, Cohen J, Powderly W, , 2003. Tularemia. , eds. Major Tropical Syndromes by Body System: Systemic Infections. London: Mosby, 16491653. [Google Scholar]
  19. Hardin LE, Satalowich FT, , 1998. Tick-borne disease summary—1997. Missouri Epidemiologist 20: 69. [Google Scholar]
  20. Assal N, Blenden DC, Price ER, , 1967. Epidemiologic study of human tularemia reported in Missouri, 1949–65. Public Health Rep 82: 627632.[Crossref] [Google Scholar]
  21. Burg JG, , 2001. Seasonal activity and spatial distribution of host-seeking adults of the tick Dermacentor variabilis . Med Vet Entomol 15: 413421.[Crossref] [Google Scholar]
  22. Kollars TM, Oliver JH, Durden LA, Kollars PG, , 2000. Host associations and seasonal activity of Amblyomma americanum (Acari: Ixodidae) in Missouri. J Parasitol 86: 11561159.[Crossref] [Google Scholar]
  23. Kollars TM, Oliver JH, Masters EJ, Kollars PG, Durden LA, , 2000. Host utilization and seasonal occurrence of Dermacentor species (Acari: Ixodidae) in Missouri, USA. Exp Appl Acarol 24: 631643.[Crossref] [Google Scholar]
  24. Zimmerman RH, Mcwherter GR, Bloemer SR, , 1987. Role of small mammals in population-dynamics and dissemination of Amblyomma americanum and Dermacentor variabilis (Acari, Ixodidae) at Land-Between-the-Lakes, Tennessee. J Med Entomol 24: 370375.[Crossref] [Google Scholar]
  25. Koch HG, , 1984. Survival of the lone star tick, Amblyomma americanum (Acari, Ixodidae), in contrasting habitats and different years in southeastern Oklahoma. J Med Entomol 21: 6979.[Crossref] [Google Scholar]
  26. Ginsberg HS, Ewing CP, , 1989. Comparison of flagging, walking, trapping, and collecting from hosts as sampling methods for northern deer ticks, Ixodes dammini, and lone-star ticks, Amblyomma americanum (Acari, Ixodidae). Exp Appl Acarol 7: 313322.[Crossref] [Google Scholar]
  27. Lane RS, , 1996. Risk of human exposure to vector ticks (Acari: Ixodidae) in a heavily used recreational area in northern California. Am J Trop Med Hyg 55: 165173. [Google Scholar]
  28. Durden LA, Keirans JE, , 1996. Nymphs of the Genus Ixodes (Acari: Ixodidae) of the United States: Taxonomy, Identification Key, Distribution, Hosts, and Medical/Veterinary Importance. Lanham, MD: Entomological Society of America. [Google Scholar]
  29. Keirans JE, Durden LA, , 1998. Illustrated key to nymphs of the tick genus Amblyomma (Acari: Ixodidae) found in the United States. J Med Entomol 35: 489495.[Crossref] [Google Scholar]
  30. Keirans JE, Litwak TR, , 1989. Pictorial key to the adults of hard ticks, family Ixodidae (Ixodida, Ixodoidea), east of the Mississippi River. J Med Entomol 26: 435448.[Crossref] [Google Scholar]
  31. Lillesand TM, Kiefer RW, , 1994. Remote Sensing and Image Interpretation. New York: Wiley. [Google Scholar]
  32. Crist EP, Kauth RJ, , 1986. The tasseled cap de-mystified. Photogramm Eng Remote Sensing 52: 8186. [Google Scholar]
  33. Lancaster JL, , 1957. Control of the lone star tick. Arkansas Agricultural Experiment Station Report Series 67: 116. [Google Scholar]
  34. Centers for Disease Control and Prevention, 1997. Case definitions for infectious conditions under public health surveillance. MMWR Recomm Rep 46: 155. [Google Scholar]
  35. Burnham KP, Anderson DR, , 2002. Model Selection and Multi-Model Inference: A Practical Information—Theoretic Approach. New York: Springer-Verlag. [Google Scholar]
  36. Kollars TM, Durden LA, Keirans JE, Oliver JH, , 1995. First records of Haemaphysalis (Aboimisalis) chordeilis, Ixodes (Ixodes) brunneus, and Ixodes (Pholeoixodes) banksi (Acari, Ixodidae) from Missouri. J Entomol Sci 30: 511512. [Google Scholar]
  37. Kollars TM, Oliver JH, , 2003. Host associations and seasonal occurrence of Haemaphysalis leporispalustris, Ixodes brunneus, I. cookie, I. dentatus, and I. texanus (Acari: Ixodidae) in southeastern Missouri. J Med Entomol 40: 103107.[Crossref] [Google Scholar]
  38. Hopla CE, , 1953. Experimental studies on tick transmission of tularemia organisms. Am J Hyg 53: 101118. [Google Scholar]
  39. Calhoun EL, Alford HI, Jr, 1955. Incidence of tularemia and Rocky Mountain spotted fever among common ticks of Arkansas. Am J Trop Med Hyg 4: 310317. [Google Scholar]
  40. Calhoun EL, , 1954. Natural occurrence of tularemia in the lone star tick, Amblyomma americanum (Linn.), and in dogs in Arkansas. Am J Trop Med Hyg 3: 360366. [Google Scholar]
  41. Koch HG, , 1988. Suitability of white-tailed deer, cattle, and goats as hosts for the lone star tick, Amblyomma americanum (Acari, Ixodidae). J Kans Entomol Soc 61: 251257. [Google Scholar]
  42. Koch KR, Burg JG, , 2006. Relative abundance and survival of the tick Amblyomma americanum collected from sunlit and shaded habitats. Med Vet Entomol 20: 173176.[Crossref] [Google Scholar]
  43. Childs JE, Paddock CD, , 2003. The ascendancy of Amblyomma americanum as a vector of pathogens affecting humans in the United States. Annu Rev Entomol 48: 307337.[Crossref] [Google Scholar]
  44. Paddock CD, Yabsley MJ, , 2007. Ecological havoc, the rise of white-tailed deer, and the emergence of Amblyomma americanum-associated zoonoses in the United States. Curr Top Microbiol Immunol 315: 289324. [Google Scholar]
  45. Eisen RJ, Eisen L, Girard YA, Fedorova N, Mun J, Slikas B, Leonhard S, Kitron U, Lane RS, , 2010. A spatially-explicit model of acarological risk of exposure to Borrelia burgdorferi-infected Ixodes pacificus nymphs in northwestern California based on woodland type, temperature, and water vapor. Ticks Tick Borne Dis 1: 3543.[Crossref] [Google Scholar]
  46. Eisen RJ, Eisen L, Lane RS, , 2006. Predicting density of Ixodes pacificus nymphs in dense woodlands in Mendocino County, California, based on geographic information systems and remote sensing versus field-derived data. Am J Trop Med Hyg 74: 632640. [Google Scholar]
  47. Eisen L, Eisen RJ, Lane RS, , 2006. Geographical distribution patterns and habitat suitability models for presence of host-seeking ixodid ticks in dense woodlands of Mendocino County, California. J Med Entomol 43: 415427.[Crossref] [Google Scholar]
  48. Kitron U, Kazmierczak JJ, , 1997. Spatial analysis of the distribution of Lyme disease in Wisconsin. Am J Epidemiol 145: 558566.[Crossref] [Google Scholar]
  49. Merten HA, Durden LA, , 2000. A state-by-state survey of ticks recorded from humans in the United States. J Vector Ecol 25: 102113. [Google Scholar]
  50. Hopla CE, Downs CM, , 1953. The isolation of Bacterium tularense from the tick, Amblyomma americanum . J Kans Entomol Soc 26: 7273. [Google Scholar]

Data & Media loading...

  • Received : 18 Oct 2010
  • Accepted : 21 Nov 2010
  • Published online : 04 Mar 2011

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error