Volume 85, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Models can be useful tools for understanding the dynamics and control of mosquito-borne disease. More detailed models may be more realistic and better suited for understanding local disease dynamics; however, evaluating model suitability, accuracy, and performance becomes increasingly difficult with greater model complexity. Sensitivity analysis is a technique that permits exploration of complex models by evaluating the sensitivity of the model to changes in parameters. Here, we present results of sensitivity analyses of two interrelated complex simulation models of mosquito population dynamics and dengue transmission. We found that dengue transmission may be influenced most by survival in each life stage of the mosquito, mosquito biting behavior, and duration of the infectious period in humans. The importance of these biological processes for vector-borne disease models and the overwhelming lack of knowledge about them make acquisition of relevant field data on these biological processes a top research priority.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 2010. Dengue and Dengue Hemorrhagic Fever Fact Sheet. Available at: http://www.who.int/mediacentre/factsheets/fs117/en/index.html. Accessed July 2010. [Google Scholar]
  2. MacKenzie JS, Gubler DJ, Peterson LR, , 2004. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile, and dengue viruses. Nat Med 12: s98s109.[Crossref] [Google Scholar]
  3. McKenzie FE, , 2000. Why model malaria? Parasitol Today 16: 511516.[Crossref] [Google Scholar]
  4. McKenzie FE, Samba EM, , 2004. The role of mathematical modeling in evidence-based malaria control. Am J Trop Med Hyg 71: 9496. [Google Scholar]
  5. Ross R, , 1911. The mathematics of malaria. BMJ 1: 1023.[Crossref] [Google Scholar]
  6. Chitnis N, Hyman JM, Cushing JM, , 2008. Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull Math Biol 70: 12721296.[Crossref] [Google Scholar]
  7. Focks DA, Daniels E, Haile DG, Keesling JE, , 1995. A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg 53: 489506. [Google Scholar]
  8. Focks DA, Haile DG, Daniels E, Mount GA, , 1993. Dynamic life table model for Aedes aegypti (Diptera, Culicidae): analysis of the literature and model development. J Med Entomol 30: 10031017.[Crossref] [Google Scholar]
  9. Blower SM, Dowlatabadi H, , 1994. Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int Stat Rev 62: 229243.[Crossref] [Google Scholar]
  10. Morrison AC, Minnick SL, Rocha C, Forshey BM, Stoddard ST, Getis A, Focks DA, Russell KL, Olson JG, Blair PJ, Watts DM, Sihuincha M, Scott TW, Kochel TJ, , 2010. Epidemiology of dengue virus in Iquitos, Peru 1999 to 2005: interepidemic and epidemic patterns of transmission. PLoS Negl Trop Dis 4: e670.[Crossref] [Google Scholar]
  11. Morrison AC, Gray K, Getis A, Astete H, Sihuincha M, Focks D, Watts D, Stancil JD, Olson JG, Blair P, Scott TW, , 2004. Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in Iquitos, Peru. J Med Entomol 41: 11231142.[Crossref] [Google Scholar]
  12. Pan American Health Organization, 1998. Health in the Americas, Vol. II. Washington, DC: PAHO Scientific Publication. [Google Scholar]
  13. Kendall BE, Briggs CJ, Murdoch WW, Turchin P, Ellner SP, McCauley E, Nisbet RM, Wood SN, , 1999. Why do populations cycle? A synthesis of statistical and mechanistic modeling approaches. Ecology 80: 17891805.[Crossref] [Google Scholar]
  14. Bartley LM, Donnelly CA, Garnett GP, , 2002. The seasonal pattern of dengue in endemic areas: mathematical models of mechanisms. Trans R Soc Trop Med Hyg 96: 387397.[Crossref] [Google Scholar]
  15. de Moor PP, Steffens FE, , 1970. Computer-simulated model of an arthropod-borne virus transmission cycle, with special reference to chikungunya virus. Trans R Soc Trop Med Hyg 64: 927934.[Crossref] [Google Scholar]
  16. Hancock PA, Godfray HCJ, , 2007. Application of the lumped age-class technique to studying the dynamics of malaria-mosquito-human interactions. Malar J 6: 98.[Crossref] [Google Scholar]
  17. Jetten TH, Martens WJM, Takken W, , 1996. Model simulations to estimate malaria risk under climate change. J Med Entomol 33: 361371.[Crossref] [Google Scholar]
  18. Massad E, Forattini OP, , 1998. Modelling the temperature sensitivity of some physiological parameters of epidemiologic significance. Ecosyst Health 4: 119129.[Crossref] [Google Scholar]
  19. Ruan SG, Xiao DM, Beier JC, , 2008. On the delayed Ross-Macdonald model for malaria transmission. Bull Math Biol 70: 10981114.[Crossref] [Google Scholar]
  20. Scott TW, McLean RG, Francy DB, Card CS, , 1983. A simulation model for the vector-host transmission system of a mosquito-borne avian virus, Turlock (Bunyaviridae). J Med Entomol 20: 625640.[Crossref] [Google Scholar]
  21. Y, Sauerborn R, Séraphin S, Hoshen M, , 2007. Using modelling to assess the risk of malarial infection during the dry season, on a local scale in an endemic area of rural Burkina Faso. Ann Trop Med Parasitol 101: 375389.[Crossref] [Google Scholar]
  22. Supriatna AK, Soewono E, van Gils SA, , 2008. A two-age-classes dengue transmission model. Math Biosci 216: 114121.[Crossref] [Google Scholar]
  23. Codeco CT, Luz PM, Struchiner CJ, , 2004. Risk assessment of yellow fever urbanization in Rio de Janeiro, Brazil. Trans R Soc Trop Med Hyg 98: 702710.[Crossref] [Google Scholar]
  24. Freeman J, Laserson KF, Petralanda I, Spielman A, , 1999. Effect of chemotherapy on malaria transmission among Yanomani Amerindians: simulated consequences of placebo treatment. Am J Trop Med Hyg 60: 774780. [Google Scholar]
  25. Ruiz D, Poveda G, Vélez ID, Quiñones ML, Rúa GL, Velásquez LE, Zuluaga JS, , 2006. Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: contributions to a National Malaria Early Warning System. Malar J 5: 66.[Crossref] [Google Scholar]
  26. Santos LBL, Costa MC, Pinho STR, Andrade RFS, Barreto FR, Teixeira MG, Barreto ML, , 2009. Periodic forcing in a three-level cellular automata model for a vector-transmitted disease. Phys Rev E Stat Nonlin Soft Matter Phys 80: 016102.[Crossref] [Google Scholar]
  27. Shaman J, , 2007. Amplification due to spatial clustering in an individual-based model of mosquito-avian arbovirus transmission. Trans R Soc Trop Med Hyg 101: 469483.[Crossref] [Google Scholar]
  28. Harrington LC, Buonaccorsi JP, Edman JD, Costero A, Kittayapong P, Clark GG, Scott TW, , 2001. Analysis of survival of young and old Aedes aegypti (Diptera: Culicidae) from Puerto Rico and Thailand. J Med Entomol 38: 537547.[Crossref] [Google Scholar]
  29. Harrington LC, Vermeylen F, Jones JJ, Kitthawee S, Sithiprasasna R, Edman JD, Scott TW, , 2008. Age-dependent survival of the dengue vector Aedes aegypti (Diptera: Culicidae) demonstrated by simultaneous release-recapture of different age cohorts. J Med Entomol 45: 307313.[Crossref] [Google Scholar]
  30. Styer LM, Carey JR, Wang JL, Scott TW, , 2007. Mosquitoes do senesce: departure from the paradigm of constant mortality. Am J Trop Med Hyg 76: 111117. [Google Scholar]
  31. Styer LM, Minnick SL, Sun AK, Scott TW, , 2007. Mortality and reproductive dynamics of Aedes aegypti (Diptera: Culicidae) fed human blood. Vector Borne Zoonotic Dis 7: 8698.[Crossref] [Google Scholar]
  32. Muir LE, Kay BH, , 1998. Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia. Am J Trop Med Hyg 58: 277282. [Google Scholar]
  33. Futami K, Sonye G, Akweywa P, Kaneko S, Minakawa N, , 2008. Diving behavior in Anopheles gambiae (Diptera: Culicidae): avoidance of a predacious wolf spider (Araneae: Lycosidae) in relation to life stage and water depth. J Med Entomol 45: 10501056.[Crossref] [Google Scholar]
  34. Lee DK, Bhatkar AP, Vinson SB, Olson JK, , 1994. Impact of foraging red imported fire ants (Solenopsis invicta) (Hymenoptera, Formicidae) on Psorophora columbiae eggs. J Am Mosq Control Assoc 10: 163173. [Google Scholar]
  35. Roitberg BD, Mondor EB, Tyerman JGA, , 2003. Pouncing spider, flying mosquito: blood acquisition increases predation risk in mosquitoes. Behav Ecol 14: 736740.[Crossref] [Google Scholar]
  36. Ellis AM, , 2008. Incorporating density dependence into the oviposition preference —offspring performance hypothesis. J Anim Ecol 77: 247256.[Crossref] [Google Scholar]
  37. Legros M, Lloyd AL, Huang Y, Gould F, , 2009. Density-dependent intraspecific competition in the larval stage of Aedes aegypti (Diptera: Culicidae): revisiting the current paradigm. J Med Entomol 46: 409419.[Crossref] [Google Scholar]
  38. Leonard PM, Juliano SA, , 1995. Effect of leaf litter on fitness and population performance of the tree hole mosquito Aedes triseriatus . Ecol Entomol 20: 125136.[Crossref] [Google Scholar]
  39. Reiskind MH, Zarrabi AA, Lounibos LP, , 2010. Invasive leaf resources alleviate density dependence in the invasive mosquito, Aedes albopictus . Biol Invasions 12: 23192328.[Crossref] [Google Scholar]
  40. Aldemir A, Bedir H, Demirci B, Alten B, , 2010. Biting activity of mosquito species (Diptera: Culicidae) in the Turkey–Armenia border area, Ararat Valley, Turkey. J Med Entomol 47: 2227.[Crossref] [Google Scholar]
  41. Rodríguez M, Pérez L, Caicedo JC, Prieto G, Arroyo JA, Kaur H, Suárez-Mutis M, de La Hoz F, Lines J, Alexander N, , 2009. Composition and biting activity of Anopheles (Diptera: Culicidae) in the Amazon region of Colombia. J Med Entomol 46: 307315.[Crossref] [Google Scholar]
  42. Afolabi BM, Amajoh CN, Adewole TA, Salako LA, , 2006. Seasonal and temporal variations in the population and biting habit of mosquitoes on the Atlantic coast of Lagos, Nigeria. Med Princ Pract 15: 200208.[Crossref] [Google Scholar]
  43. Barnard DR, Posey KH, Smith D, Schreck CE, , 1998. Mosquito density, biting rate and cage size effects on repellent tests. Med Vet Entomol 12: 3945.[Crossref] [Google Scholar]
  44. Michael E, Ramaiah KD, Hoti SL, Barker G, Paul MR, Yuvaraj J, Das PK, Grenfell BT, Bundy DA, , 2001. Quantifying mosquito biting patterns on humans by DNA fingerprinting of bloodmeals. Am J Trop Med Hyg 65: 722728. [Google Scholar]
  45. Scott TW, Clark GG, Lorenz LH, Amerasinghe PH, Reiter P, Edman JD, , 1993. Detection of multiple blood-feeding in Aedes aegypti (Diptera, Culicidae) during a single gonotrophic cycle using a histologic technique. J Med Entomol 30: 9499.[Crossref] [Google Scholar]
  46. Scott TW, Githeko AK, Fleisher A, Harrington LC, Yan G, , 2006. DNA profiling of human blood in anophelines from lowland and highland sites in western Kenya. Am J Trop Med Hyg 75: 231237. [Google Scholar]
  47. Xu C, Legros M, Gould F, Lloyd AL, , 2010. Understanding uncertainties in model-based predictions of Aedes aegypti population dynamics. PLoS Negl Trop Dis 4: e830.[Crossref] [Google Scholar]
  48. Chowell G, Diaz-Dueñas P, Miller JC, Alcazar-Velazco A, Hyman JM, Fenimore PW, Castillo-Chavez C, , 2007. Estimation of the reproduction number of dengue fever from spatial epidemic data. Math Biosci 208: 571589.[Crossref] [Google Scholar]

Data & Media loading...

Supplementary appendix

  • Received : 13 Sep 2010
  • Accepted : 29 Jan 2011
  • Published online : 01 Aug 2011

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error