Volume 84, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Although co-infections are common and can have important epidemiologic and evolutionary consequences, studies exploring biochemical effects of multiple-strain infections remain scarce. We studied metabolic responses of NMRI mice to single (STIB777AE-Green1 or STIB246BA-Red1) and co-infections using a H nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling strategy. All infections caused an alteration in urinary biochemical composition by day 4 postinfection, characterized by increased concentrations of 2-oxoisocaproate, D-3-hydroxybutyrate, lactate, 4-hydroxyphenylacetate, phenylpyruvate, and 4-hydroxyphenylpyruvate, and decreased levels of hippurate. Although there were no marked differences in metabolic signatures observed in the mouse infected with a single or dual strain of , there was a slower metabolic response in mice infected with green strain compared with mice infected with either the red strain or both strains concurrently. Pyruvate, phenylpyruvate, and hippurate were correlated with parasitemia, which might be useful in monitoring responses to therapeutic interventions.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Balmer O, Caccone A, , 2008. Multiple-strain infections of Trypanosoma brucei across Africa. Acta Trop 107: 275279.[Crossref] [Google Scholar]
  2. Warren RM, Victor TC, Streicher EM, Richardson M, Beyers N, Gey van Pittius NC, van Helden PD, , 2004. Patients with active tuberculosis often have different strains in the same sputum specimen. Am J Respir Crit Care Med 169: 610614.[Crossref] [Google Scholar]
  3. Sharp GB, Kawaoka Y, Jones DJ, Bean WJ, Pryor SP, Hinshaw V, Webster RG, , 1997. Coinfection of wild ducks by influenza A viruses: distribution patterns and biological significance. J Virol 71: 61286135. [Google Scholar]
  4. Schmid-Hempel P, Reber Funk C, , 2004. The distribution of genotypes of the trypanosome parasite, Crithidia bombi, in populations of its host, Bombus terrestris . Parasitology 129: 147158.[Crossref] [Google Scholar]
  5. Keeney DB, Waters JM, Poulin R, , 2007. Clonal diversity of the marine trematode Maritrema novaezealandensis within intermediate hosts: the molecular ecology of parasite life cycles. Mol Ecol 16: 431439.[Crossref] [Google Scholar]
  6. Balmer O, Stearns SC, Schötzau A, Brun R, , 2009. Intraspecific competition between co-infecting parasite strains enhances host survival in African trypanosomes. Ecology 90: 33673378.[Crossref] [Google Scholar]
  7. Smith T, Beck HP, Kitua A, Mwankusye S, Felger I, Fraser-Hurt N, Irion A, Alonso P, Teuscher T, Tanner M, , 1999. Age dependence of the multiplicity of Plasmodium falciparum infections and of other malariological indices in an area of high endemicity. Trans R Soc Trop Med Hyg 93 (Suppl 1): 1520.[Crossref] [Google Scholar]
  8. Van Wijngaerden E, Peetermans WE, Van Lierde S, Van Eldere J, , 1997. Polyclonal Staphylococcus endocarditis. Clin Infect Dis 25: 6971.[Crossref] [Google Scholar]
  9. Rijnders BJ, Van Wijngaerden E, Van Eldere J, Peetermans WE, , 2001. Polyclonal Staphylococcus epidermidis intravascular catheter-related infections. Clin Microbiol Infect 7: 388391.[Crossref] [Google Scholar]
  10. Maudlin I, Holmes PH, Miles MA, , 2004. The Trypanosomiases. Wallingford, UK: CABI Publishing.[Crossref] [Google Scholar]
  11. Mulligan HW, Potts WH, , 1970. The African Trypanosomiases. New York: Wiley-Interscience. [Google Scholar]
  12. Barrett MP, Burchmore RJ, Stich A, Lazzari JO, Frasch AC, Cazzulo JJ, Krishna S, , 2003. The trypanosomiases. Lancet 362: 14691480.[Crossref] [Google Scholar]
  13. Brun R, Balmer O, , 2006. New developments in human African trypanosomiasis. Curr Opin Infect Dis 19: 415420.[Crossref] [Google Scholar]
  14. MacLean L, Odiit M, MacLeod A, Morrison L, Sweeney L, Cooper A, Kennedy PG, Sternberg JM, , 2007. Spatially and genetically distinct African trypanosome virulence variants defined by host interferon-gamma response. J Infect Dis 196: 16201628.[Crossref] [Google Scholar]
  15. Wang Y, Holmes E, Nicholson JK, Cloarec O, Chollet J, Tanner M, Singer BH, Utzinger J, , 2004. Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for biomarker identification. Proc Natl Acad Sci USA 101: 1267612681.[Crossref] [Google Scholar]
  16. Lindon JC, Nicholson JK, Holmes E, Everett JR, , 2000. Metabonomics: metabolic processes studied by NMR spectroscopy of biofluids. Concepts Magn Reson 12: 289320.[Crossref] [Google Scholar]
  17. Trygg J, Holmes E, Lundstedt T, , 2007. Chemometrics in metabonomics. J Proteome Res 6: 469479.[Crossref] [Google Scholar]
  18. Trygg J, Wold S, , 2002. Orthogonal projections to latent structures (O-PLS). J Chemometr 16: 119128.[Crossref] [Google Scholar]
  19. Wang Y, Li JV, Saric J, Keiser J, Wu J, Utzinger J, Holmes E, , 2010. Advances in metabolic profiling of experimental nematode and trematode infections. Adv Parasitol 73: 373404.[Crossref] [Google Scholar]
  20. Pullan R, Brooker S, , 2008. The health impact of polyparasitism in humans: are we under-estimating the burden of parasitic diseases? Parasitology 135: 783794.[Crossref] [Google Scholar]
  21. Steinmann P, Utzinger J, Du ZW, Zhou XN, , 2010. Multiparasitism a neglected reality on global, regional and local scale. Adv Parasitol 73: 2150.[Crossref] [Google Scholar]
  22. Wu JF, Holmes E, Xue J, Xiao SH, Singer BH, Tang HR, Utzinger J, Wang YL, , 2010. Metabolic alterations in the hamster co-infected with Schistosoma japonicum and Necator americanus . Int J Parasitol 40: 695703.[Crossref] [Google Scholar]
  23. Wang YL, Utzinger J, Saric J, Li JV, Burckhardt J, Dirnhofer S, Nicholson JK, Singer BH, Brun R, Holmes E, , 2008. Global metabolic responses of mice to Trypanosoma brucei brucei infection. Proc Natl Acad Sci USA 105: 61276132.[Crossref] [Google Scholar]
  24. Balmer O, Tostado C, , 2006. New fluorescence markers to distinguish co-infecting Trypanosoma brucei strains in experimental multiple infections. Acta Trop 97: 94101.[Crossref] [Google Scholar]
  25. Balmer O, Palma C, MacLeod A, Caccone A, , 2006. Characterization of di-, tri- and tetranucleotide microsatellite markers with perfect repeats for Trypanosoma brucei and related species. Mol Ecol Notes 6: 508510.[Crossref] [Google Scholar]
  26. R Development Core Team, 2005. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Development Core Team. [Google Scholar]
  27. Bylesjo M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J, , 2006. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemometr 20: 341351.[Crossref] [Google Scholar]
  28. Li JV, Wang Y, Saric J, Nicholson JK, Dirnhofer S, Singer BH, Tanner M, Wittlin S, Holmes E, Utzinger J, , 2008. Global metabolic responses of NMRI mice to an experimental Plasmodium berghei infection. J Proteome Res 7: 39483956.[Crossref] [Google Scholar]
  29. Saric J, Li JV, Wang YL, Keiser J, Bundy JG, Holmes E, Utzinger J, , 2008. Metabolic profiling of an Echinostoma caproni infection in the mouse for biomarker discovery. PLoS Negl Trop Dis 2: e254.[Crossref] [Google Scholar]
  30. Abramowitz M, Stegun IA, , 1964. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Washington, DC: U.S. Government Printing Office, 1046. [Google Scholar]
  31. Stibbs HH, Seed JR, , 1975. Metabolism of tyrosine and phenylalanine in Trypanosoma brucei gambiense . Int J Biochem 6: 197203.[Crossref] [Google Scholar]
  32. El Sawalhy A, Seed JR, Hall JE, El Attar H, , 1998. Increased excretion of aromatic amino acid catabolites in animals infected with Trypanosoma brucei evansi . J Parasitol 84: 469473.[Crossref] [Google Scholar]
  33. Cazzulo JJ, , 1992. Aerobic fermentation of glucose by trypanosomatids. FASEB J 6: 31533161. [Google Scholar]
  34. Bakker BM, Michels PA, Opperdoes FR, Westerhoff HV, , 1999. What controls glycolysis in bloodstream form Trypanosoma brucei? J Biol Chem 274: 1455114559.[Crossref] [Google Scholar]
  35. Sant'Ana CD, Menaldo DL, Costa TR, Godoy H, Muller VD, Aquino VH, Albuquerque S, Sampaio SV, Monteiro MC, Stábeli RG, Soares AM, , 2008. Antiviral and antiparasite properties of an L-amino acid oxidase from the snake Bothrops jararaca: cloning and identification of a complete cDNA sequence. Biochem Pharmacol 76: 279288.[Crossref] [Google Scholar]
  36. Franca SC, Kashima S, Roberto PG, Marins M, Ticli FK, Pereira JO, Astolfi-Filho S, Stábeli RG, Magro AJ, Fontes MR, Sampaio SV, Soares AM, , 2007. Molecular approaches for structural characterization of Bothrops L-amino acid oxidases with antiprotozoal activity: cDNA cloning, comparative sequence analysis, and molecular modeling. Biochem Biophys Res Commun 355: 302306.[Crossref] [Google Scholar]
  37. Chlopicki S, Swies J, Mogielnicki A, Buczko W, Bartus M, Lomnicka M, Adamus J, Gebicki J, , 2007. 1-Methylnicotinamide (MNA), a primary metabolite of nicotinamide, exerts anti-thrombotic activity mediated by a cyclooxygenase-2/prostacyclin pathway. Br J Pharmacol 152: 230239.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 14 Jul 2010
  • Accepted : 22 Sep 2010
  • Published online : 05 Jan 2011

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error