Volume 84, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



World-wide dengue vector control is hampered by the spread of insecticide resistance in . We report the resistance status of a wild population from Martinique (Vauclin) to conventional larvicides ( var [] and temephos) and potential alternatives (spinosad, diflubenzuron, and pyriproxyfen). The efficacy and residual activity of these insecticides were evaluated under simulated and field conditions. The Vauclin strain exhibited a high level of resistance to temephos, a tolerance to insect growth regulators, and full susceptibility to spinosad and . In simulated trials, pyriproxyfen and showed long residual activities in permanent breeding containers (28 and 37 weeks), whereas under field conditions they failed to curtail populations after four weeks. Conversely, diflubenzuron and spinosad showed a residual efficacy of 16 weeks, suggesting that these chemicals may be promising alternatives to and temephos for controlling insecticide-resistant populations.


Article metrics loading...

Loading full text...

Full text loading...



  1. World Health Organization, 2009. Dengue Guidelines for Diagnosis, Treatment, Prevention and Control. Document WHO/HTM/NTD/DEN/2009.1. Geneva: World Health Organization.
  2. World Health Organization, 2006. Report of the Scientific Working Group on Dengue. Document WHO/TDR/SWG/08. Geneva: World Health Organization.
  3. Erlanger TE, Keiser J, Utzinger J, , 2008. Effect of dengue vector control interventions on entomological parameters in developing countries: a systematic review and meta-analysis. Med Vet Entomol 22: 203221.[Crossref]
  4. Rawlins SC, , 1998. Spatial distribution of insecticide resistance in Caribbean populations of Aedes aegypti and its significance. Rev Panam Salud Publica 4: 243251.[Crossref]
  5. Rodriguez MM, Bisset J, Ruiz M, Soca A, , 2002. Cross-resistance to pyrethroid and organophosphorus insecticides induced by selection with temephos in Aedes aegypti (Diptera: Culicidae) from Cuba. J Med Entomol 39: 882888.[Crossref]
  6. Thavara U, Tawatsin A, Kong-Ngamsuk W, Mulla MS, , 2004. Efficacy and longevity of a new formulation of temephos larvicide tested in village-scale trials against larval Aedes aegypti in water-storage containers. J Am Mosq Control Assoc 20: 176182.
  7. Brengues C, Hawkes NJ, Chandre F, McCarroll L, Duchon S, Guillet P, Manguin S, Morgan JC, Hemingway J, , 2003. Pyrethroid and DDT cross-resistance in Aedes aegypti is correlated with novel mutations in the voltage-gated sodium channel gene. Med Vet Entomol 17: 8794.[Crossref]
  8. Strode C, Wondji CS, David JP, Hawkes NJ, Lumjuan N, Nelson DR, Drane DR, Karunaratne SH, Hemingway J, Black WC IV, Ranson H, , 2008. Genomic analysis of detoxification genes in the mosquito Aedes aegypti . Insect Biochem Mol Biol 38: 113123.[Crossref]
  9. Marcombe S, Poupardin R, Darriet F, Reynaud S, Bonnet J, Strode C, Brengues C, Yebakima A, Ranson H, Corbel V, David JP, , 2009. Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: a case study in Martinique Island (French West Indies). BMC Genomics 10: 494.[Crossref]
  10. Marcombe S, Carron A, Darriet F, Etienne M, Agnew P, Tolosa M, Yp-Tcha MM, Lagneau C, Yebakima A, Corbel V, , 2009. Reduced efficacy of pyrethroid space sprays for dengue control in an area of Martinique with pyrethroid resistance. Am J Trop Med Hyg 80: 745751.
  11. Jirakanjanakit N, Saengtharatip S, Rongnoparut P, Duchon S, Bellec C, Yoksan S, , 2007. Trend of temephos resistance in Aedes (Stegomyia) mosquitoes in Thailand during 2003–2005. Environ Entomol 36: 506511.[Crossref]
  12. Martins AJ, Belinato TA, Lima JB, Valle D, , 2008. Chitin synthesis inhibitor effect on Aedes aegypti populations susceptible and resistant to organophosphate temephos. Pest Manag Sci 64: 676680.[Crossref]
  13. Lacey LA, , 2007. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J Am Mosq Control Assoc 23: 133163.[Crossref]
  14. Lima JB, de Melo NV, Valle D, , 2005. Residual effect of two Bacillus thuringiensis var. israelensis products assayed against Aedes aegypti (Diptera: Culicidae) in laboratory and outdoors at Rio de Janeiro, Brazil. Rev Inst Med Trop Sao Paulo 47: 125130.[Crossref]
  15. World Health Organization, 2004. Report of the Seventh WHOPES Working Goup Meeting. WHO/HQ, Geneva, December 2–4, 2003, Review of Vectobac WG, Permanet, Gokilath-S 5EC. Document WHO/CDS/WHOPES/2004.8. Geneva: World Health Organization.
  16. World Health Organization, 2006. Report of the Ninth WHOPES Working Group Meeting. WHO/HQ, Geneva, December 5–9, 2005. Review of Dimilin GR and DT, Vectobac DT, Aqua K-Othrine, Aqua Reslin Super. Document WHO/CDS/NTD/WHOPES/2006.2. Geneva: World Health Organization.
  17. Corriveau R, Philippon B, Yebakima A, , 2003. La Dengue dans les Départements Français d'Amérique. Comment Optimiser la Lutte Contre Cette Maladie? IRD Édition. Paris: Expertise Collégiale.[Crossref]
  18. Bill and Melinda Gates Foundation, 2007. Market Assessment for Public Health Pesticide Products: A Report by the Bill and Melinda Gates Foundation and the Boston Consulting Group. Seattle, WA: Bill and Melinda Gates Foundation.
  19. Matsumura F, , 2010. Studies on the action mechanism of benzoylurea insecticides to inhibit the process of chitin synthesis in insects: a review on the ststus of research activities in the past, the present and the future prospects. Pesticide Biochenistry and Physiology 97: 133139.[Crossref]
  20. Thavara U, Tawatsin A, Chansang C, Asavadachanukorn P, Zaim M, Mulla MS, , 2007. Simulated field evaluation of the efficacy of two formulations of diflubenzuron, a chitin synthesis inhibitor against larvae of Aedes aegypti (L.) (Diptera: Culicidae) in water-storage containers. Southeast Asian J Trop Med Public Health 38: 269275.
  21. Copping LG, Menn JJ, , 2000. Biopesticides: a review of their action, application and efficacy. Pest Manag Sci 56: 651676.[Crossref]
  22. Salgado VL, , 1997. The modes of action of spinosad and other insect control products. Down Earth 52: 3543
  23. Darriet F, Corbel V, , 2006. Laboratory evaluation of pyriproxyfen and spinosad, alone and in combination, against Aedes aegypti larvae. J Med Entomol 43: 11901194.[Crossref]
  24. Dhadialla TS, Carlson GR, Le DP, , 1998. New insecticides with ecdysteroidal and juvenile hormone activity. Annu Rev Entomol 43: 545569.[Crossref]
  25. Paul A, Harrington LC, Scott JG, , 2006. Evaluation of novel insecticides for control of dengue vector Aedes aegypti (Diptera: Culicidae). J Med Entomol 43: 5560.[Crossref]
  26. World Health Organization, 2008. Diflubenzuron in Drinking-Water: Use for Vector Control in Drinking-water Sources and Containers. Document WHO/HSE/AMR/08.03/6. Geneva: World Health Organization.
  27. World Health Organization, 2008. Pyriproxyfen in Drinking-Water: Use for Vector Control in Drinking-water Sources and Containers. Document WHO/HSE/AMR/08.03/9. Geneva: World Health Organization.
  28. World Health Organization, 2010. Spinosad DT in Drinking-Water: Use for Vector Control in Drinking-water Sources and Containers. Document WHO/HSE/WSH/10.01/12. Geneva: World Health Organization.
  29. Saavedra-Rodriguez K, Urdaneta-Marquez L, Rajatileka S, Moulton M, Flores AE, Fernandez-Salas I, Bisset J, Rodriguez M, McCall PJ, Donnelly MJ, Ranson H, Hemingway J, Black WC IV, , 2007. A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti . Insect Mol Biol 16: 785798.[Crossref]
  30. World Health Organization, 2005. Guidelines for Laboratory and Field Testing of Mosquito Larvicides. Document WHO/CDS/WHOPES/GCDPP/13. Geneva: World Health Organization.
  31. Yebakima A, , 1991. Recherche sur Aedes aegypti et Culex pipiens en Martinique. Ecologie Larvaire, Résistance aux Insecticides, Application à la Lutte. Thèse de Doctorat d'Etat es Sciences. Montpellier, France: Université Montpellier II.
  32. World Health Organization, 2006. Pesticides and their Application for the Control of Vectors and Pests of Public Health Importance. Sixth edition. WHO/CDS/NTD/WHOPES/GCDPP/2006.1. Geneva: World Health Organization.
  33. World Health Organization, 2008. Report of the Eleventh WHOPES Working Group Meeting WHO/HQ. Geneva, December 10–13, 2007. Review of: Spinosad 7.48% DT, Netprotect, Duranet, Dawaplus, Icon Maxx. Document WHO/HTM/NTD/WHOPES/2008.1. Geneva: World Health Organization.
  34. Abbott W, , 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol 18: 265267.[Crossref]
  35. Finney D, , 1971. Probit Analysis. Cambridge, UK: Cambridge University Press.
  36. Raymond M, Prato G, Ratsira D, , 1997. Probit and Logit Analysis Program version 2.0. Montpellier, France: Praxème R&D.
  37. World Health Organization, 2009. Bacillus thuringiensis israelensis (Bti) in Drinking-Water, Background Document for Development of WHO Guidelines for Drinking-Water Quality. Document WHO Revised Fourth Edition Bacillus thuringiensis_Bti_July272009_2. Geneva: World Health Organization.
  38. World Health Organization, 2001. Report of the 4th WHOPES Working Group Meeting – IR3535, KBR3023, (RS)-Methoprene 20%EC, Pyriproxyfen 0.5%GR and Lambda-Cyhalothrin 2.5%CS. December 4–5, 2000, Geneva, 2001. Document WHO/CDS/WHOPES/2001.2. Geneva: World Health Organization.
  39. Vythilingam I, Luz BM, Hanni R, Beng TS, Huat TC, , 2005. Laboratory and field evaluation of the insect growth regulator pyriproxyfen (Sumilarv 0.5G) against dengue vectors. J Am Mosq Control Assoc 21: 296300.[Crossref]
  40. Becker N, Petric D, Zgomba M, Boase C, Dahl C, Lane J, Kaiser A, , 2003. Mosquitoes and Their Control. New York: Kluwer Academic/Plenum Publishers.[Crossref]
  41. Sihuincha M, Zamora-Perea E, Orellana-Rios W, Stancil JD, Lopez-Sifuentes V, Vidal-Ore C, Devine GJ, , 2005. Potential use of pyriproxyfen for control of Aedes aegypti (Diptera: Culicidae) in Iquitos, Peru. J Med Entomol 42: 620630.[Crossref]
  42. Tilquin M, Paris M, Reynaud S, Despres L, Ravanel P, Geremia RA, Gury J, , 2008. Long lasting persistence of Bacillus thuringiensis Subsp. israelensis (Bti) in mosquito natural habitats. PLoS ONE 3: e3432.[Crossref]
  43. Bret BL, Larson LL, Schoonover JR, Sparks TC, Thompson GD, , 1997. Biological properties of Spinosad. Down to Earth 52: 613.
  44. Darriet F, Duchon S, Hougard JM, , 2005. Spinosad: a new larvicide against insecticide-resistant mosquito larvae. J Am Mosq Control Assoc 21: 495296.[Crossref]
  45. Macoris-Andrighetti MT, Cerone F, Rigueti M, Galvani KC, de Lourdes da Graça M, , 2008. Effect of pyriproxyfen in Aedes aegypti populations with different levels of susceptibility to the organophosphate temephos. Dengue Bull 32: 186198.
  46. Kasai S, Shono T, Komagata O, Tsuda Y, Kobayashi M, Motoki M, Kashima I, Tanikawa T, Yoshida M, Tanaka I, Shinjo G, Hashimoto T, Ishikawa T, Takahashi T, Higa Y, Tomita T, , 2007. Insecticide resistance in potential vector mosquitoes for West Nile virus in Japan. J Med Entomol 44: 822829.[Crossref]
  47. Melo-Santos MA, Varjal-Melo JJ, Araujo AP, Gomes TC, Paiva MH, Regis LN, Furtado AF, Magalhaes T, Macoris ML, Andrighetti MT, Ayres CF, , 2010. Resistance to the organophosphate temephos: mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Trop 113: 180189.[Crossref]

Data & Media loading...

  • Received : 11 Jun 2010
  • Accepted : 16 Aug 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error