1921
Volume 84, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Hemorrhagic fever with renal syndrome (HFRS) is an important public health problem in Shandong Province, China. In this study, we combined ecologic niche modeling with geographic information systems (GIS) and remote sensing techniques to identify the risk factors and affected areas of hantavirus infections in rodent hosts. Land cover and elevation were found to be closely associated with the presence of hantavirus-infected rodent hosts. The averaged area under the receiver operating characteristic curve was 0.864, implying good performance. The predicted risk maps based on the model were validated both by the hantavirus-infected rodents' distribution and HFRS human case localities with a good fit. These findings have the applications for targeting control and prevention efforts.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2011.10-0314
2011-03-04
2018-12-19
Loading full text...

Full text loading...

/deliver/fulltext/14761645/84/3/497.html?itemId=/content/journals/10.4269/ajtmh.2011.10-0314&mimeType=html&fmt=ahah

References

  1. Schmaljohn C, Hjelle B, , 1997. Hantaviruses: a global disease problem. Emerg Infect Dis 3: 95104.[Crossref] [Google Scholar]
  2. Luo CW, Chen HX, , 2003. Study on the factors influenced epidemic of hemorrhagic fever with renal syndrome. Chin J Vector Biol Control 14: 451454. [Google Scholar]
  3. Engelthaler DM, Mosley DG, Cheek JE, Levy CE, Komatsu KK, Ettestad P, Davis T, Tanda DT, Miller L, Frampton JW, Porter R, Bryan RT, , 1999. Climatic and environmental patterns associated with hantavirus pulmonary syndrome, Four Corners region, United States. Emerg Infect Dis 5: 8794.[Crossref] [Google Scholar]
  4. Jonsson CB, Figueiredo LT, Vapalahti O, , 2010. A global perspective on hantavirus ecology, epidemiology, and disease. Clin Microbiol Rev 23: 412441.[Crossref] [Google Scholar]
  5. Langlois JP, Fahrig L, Merriam G, Artsob H, , 2001. Landscape structure influences continental distribution of hantavirus in deer mice. Landscape Ecol 16: 255266.[Crossref] [Google Scholar]
  6. Suzan G, Marce E, Giermakowski JT, Armien B, Pascale J, Mills J, Ceballos G, Gomez A, Aguirre AA, Salazar-Bravo J, Armien A, Parmenter R, Yates T, , 2008. The effect of habitat fragmentation and species diversity loss on hantavirus prevalence in Panama. Ann N Y Acad Sci 1149: 8083.[Crossref] [Google Scholar]
  7. Koch DE, Mohler RL, Goodin DG, , 2007. Stratifying land use/land cover for spatial analysis of disease ecology and risk: an example using object-based classification techniques. Geospat Health 2: 1528.[Crossref] [Google Scholar]
  8. Goodin DG, Paige R, Owen RD, Ghimire K, Koch DE, Chu YK, Jonsson CB, , 2009. Microhabitat characteristics of Akodon montensis, a reservoir for hantavirus, and hantaviral seroprevalence in an Atlantic forest site in eastern Paraguay. J Vector Ecol 34: 104113.[Crossref] [Google Scholar]
  9. Mills JN, , 2005. Regulation of rodent-borne viruses in the natural host: implications for human disease. Arch Virol Suppl 19: 4557. [Google Scholar]
  10. Gubler DJ, Reiter P, Ebi KL, Yap W, Nasci R, Patz JA, , 2001. Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases. Environ Health Perspect 109 (Suppl 2): 223233.[Crossref] [Google Scholar]
  11. Hjelle B, Glass GE, , 2000. Outbreak of hantavirus infection in the Four Corners region of the United States in the wake of the 1997–1998 El Nino-southern oscillation. J Infect Dis 181: 15691573.[Crossref] [Google Scholar]
  12. Bi P, Tong S, Donald K, Parton K, Ni J, , 2002. Climatic, reservoir and occupational variables and the transmission of haemorrhagic fever with renal syndrome in China. Int J Epidemiol 31: 189193.[Crossref] [Google Scholar]
  13. Yan L, Fang LQ, Huang HG, Zhang LQ, Feng D, Zhao WJ, Zhang WY, Li XW, Cao WC, , 2007. Landscape elements and hantaan virus-related hemorrhagic fever with renal syndrome, People's Republic of China. Emerg Infect Dis 13: 13011306.[Crossref] [Google Scholar]
  14. Zhang WY, Guo WD, Fang LQ, Li CP, Bi P, Glass GE, Jiang JF, Sun SH, Qian Q, Liu W, Yan L, Yang H, Tong SL, Cao WC, , 2010. Climate variability and hemorrhagic fever with renal syndrome transmission in northeastern China. Environ Health Perspect 118: 915920.[Crossref] [Google Scholar]
  15. Fang LQ, Wang XJ, Liang S, Li YL, Song SX, Zhang WY, Qian Q, Li YP, Wei L, Wang ZQ, Yang H, Cao WC, , 2010. Spatiotemporal trends and climatic factors of hemorrhagic fever with renal syndrome epidemic in Shandong Province, China. PLoS Negl Trop Dis 4: e789.[Crossref] [Google Scholar]
  16. Jiang JF, Zuo SQ, Zhang WY, Wu XM, Tang F, De Vlas SJ, Zhao WJ, Zhang PH, Dun Z, Wang RM, Cao WC, , 2008. Prevalence and genetic diversities of hantaviruses in rodents in Beijing, China. Am J Trop Med Hyg 78: 98105. [Google Scholar]
  17. Lee HW, Lee PW, Johnson KM, , 1978. Isolation of the etiologic agent of Korean hemorrhagic fever. J Infect Dis 137: 298308.[Crossref] [Google Scholar]
  18. Glass GE, Cheek JE, Patz JA, Shields TM, Doyle TJ, Thoroughman DA, Hunt DK, Enscore RE, Gage KL, Irland C, Peters CJ, Bryan R, , 2000. Using remotely sensed data to identify areas at risk for hantavirus pulmonary syndrome. Emerg Infect Dis 6: 238247.[Crossref] [Google Scholar]
  19. Martínez-Freiría F, Sillero N, Lizana M, Brito JC, , 2008. GIS-based niche models identify environmental correlates sustaining a contact zone between three species of European vipers. Divers Distrib 14: 452461.[Crossref] [Google Scholar]
  20. Zhang WY, Fang LQ, Jiang JF, Hui FM, Glass GE, Yan L, Xu YF, Zhao WJ, Yang H, Liu W, Cao WC, , 2009. Predicting the risk of hantavirus infection in Beijing, People's Republic of China. Am J Trop Med Hyg 80: 678683. [Google Scholar]
  21. Peterson AT, , 2006. Ecologic niche modeling and spatial patterns of disease transmission. Emerg Infect Dis 12: 18221826.[Crossref] [Google Scholar]
  22. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE, , 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129151.[Crossref] [Google Scholar]
  23. Gibson L, Barrett B, Burbidge A, , 2007. Dealing with uncertain absences in habitat modelling: a case study of a rare ground-dwelling parrot. Divers Distrib 13: 704713.[Crossref] [Google Scholar]
  24. Hernandez PA, Franke I, Herzog SK, Pacheco V, Paniagua L, Quintana HL, Soto A, Swenson JJ, Tovar C, Valqui TH, Vargas J, Young BE, , 2008. Predicting species distributions in poorly-studied landscapes. Biodivers Conserv 17: 13531366.[Crossref] [Google Scholar]
  25. Phillips SJ, Anderson RP, Schapire RE, , 2006. Maximum entropy modeling of species geographic distributions. Ecol Modell 190: 231259.[Crossref] [Google Scholar]
  26. Phillips SJ, Dudik M, , 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161175.[Crossref] [Google Scholar]
  27. Thorn JS, Nijman V, Smith D, Nekaris KA, , 2009. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). Divers Distrib 15: 289298.[Crossref] [Google Scholar]
  28. Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, Distribut NP, , 2008. Effects of sample size on the performance of species distribution models. Divers Distrib 14: 763773.[Crossref] [Google Scholar]
  29. Hernandez PA, Graham CH, Master LL, Albert DL, , 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29: 773785.[Crossref] [Google Scholar]
  30. Saatchi S, Buermann W, Ter Steege H, Mori S, Smith TB, , 2008. Modeling distribution of Amazonian tree species and diversity using remote sensing measurements. Remote Sens Environ 112: 20002017.[Crossref] [Google Scholar]
  31. Tinoco BA, Astudillo PX, Latta SC, Graham CH, , 2009. Distribution, ecology and conservation of an endangered Andean hummingbird: the violet-throated metaltail (Metallura baroni). Bird Conserv Int 19: 6376.[Crossref] [Google Scholar]
  32. Phillips SJ, Dudik M, Schapire RE, , 2004. A maximum entropy approach to species distribution modeling. Proceedings of the 21st International Conference on Machine Learning. Banff, Alberta, Canada: ACM. [Google Scholar]
  33. Gilberto P, Graziano R, Alessandro F, , 2008. Toward improved species niche modelling: Arnica montana in the alps as a case study. J Appl Ecol 45: 14101418.[Crossref] [Google Scholar]
  34. Linard C, Tersago K, Leirs H, Lambin EF, , 2007. Environmental conditions and Puumala virus transmission in Belgium. Int J Health Geogr 6: 55.[Crossref] [Google Scholar]
  35. Fielding AH, Bell JF, , 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24: 3849.[Crossref] [Google Scholar]
  36. Swets JA, , 1988. Measuring the accuracy of diagnostic systems. Science 240: 12851293.[Crossref] [Google Scholar]
  37. Araújo MB, Guisan A, , 2006. Six (or so) research priorities for species distribution modelling. J Biogeogr 33: 16771688.[Crossref] [Google Scholar]
  38. Phillips SJ, , 2009. A brief tutorial on Maxent, version: 3.3.1. Available at: http://www.cs.princeton.edu/~schapire/maxent/. Accessed August 19, 2009. [Google Scholar]
  39. Cantor SB, Sun CC, Tortolero-Luna G, Richards-Kortum R, Follen M, , 1999. A comparison of C/B ratios from studies using receiver operating characteristic curve analysis. J Clin Epidemiol 52: 885892.[Crossref] [Google Scholar]
  40. Cramer JS, , 2003. Logit Models: From Economics and Other Fields. Cambridge, MA: Cambridge Univ. Press, 6667.[Crossref] [Google Scholar]
  41. Liu CR, Berry PM, Dawson TP, Pearson RG, , 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385393.[Crossref] [Google Scholar]
  42. Araújo MB, Whittaker RJ, Ladle RJ, Erhard M, , 2005. Reducing uncertainty in projections of extinction risk from climate change. Glob Ecol Biogeogr 14: 529538.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2011.10-0314
Loading
/content/journals/10.4269/ajtmh.2011.10-0314
Loading

Data & Media loading...

Supplemental Appendix

  • Received : 02 Jun 2010
  • Accepted : 09 Dec 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error