1921
Volume 84, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Anthropogenic disturbance is associated with increased vector-borne infectious disease transmission in wildlife, domestic animals, and humans. The objective of this study was to evaluate how disturbance of a tropical forest landscape impacts abundance of the triatomine bug , a vector of Chagas disease, in the region of the Panama Canal in Panama. was collected (n = 1,186) from its primary habitat, the palm , in five habitat types reflecting a gradient of anthropogenic disturbance. There was a high proportion of palms infested with across all habitat types (range = 77.1–91.4%). Results show that disturbed habitats are associated with increased vector abundance compared with relatively undisturbed habitats. Bugs collected in disturbed sites, although in higher abundance, tended to be in poor body condition compared with bugs captured in protected forest sites. Abundance data suggests that forest remnants may be sources for populations within highly disturbed areas of the landscape.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2011.10-0041
2011-01-05
2019-02-21
Loading full text...

Full text loading...

/deliver/fulltext/14761645/84/1/070.html?itemId=/content/journals/10.4269/ajtmh.2011.10-0041&mimeType=html&fmt=ahah

References

  1. Patz JA, Graczyk TK, Geller N, Vittor AY, , 2000. Effects of environmental change on emerging parasitic diseases. Int J Parasitol 30: 13951405.[Crossref] [Google Scholar]
  2. Sutherst RW, , 2004. Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev 17: 136173.[Crossref] [Google Scholar]
  3. Walsh JF, Molyneux DH, Birley HM, , 1993. Deforestation: effects on vector-borne disease. Parasitology 106 (Suppl): S55S75.[Crossref] [Google Scholar]
  4. Gratz NG, , 1999. Emerging and resurging vector-borne diseases. Annu Rev Entomol 44: 5175.[Crossref] [Google Scholar]
  5. Yasuoka J, Levins R, , 2007. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am J Trop Med Hyg 76: 450460. [Google Scholar]
  6. Vora N, , 2008. Impact of anthropogenic environmental alterations on vector-borne diseases. Medscape J Med 10: 238 [Epub Oct 15, 2008]. [Google Scholar]
  7. Vittor AY, Gilman RH, Tielsch J, Glass G, Shields T, Lozano WS, Pinedo-Cancino V, Patz JA, , 2006. The effect of deforestation on the human biting rate of Anopheles darlingi, the primary vector of falciparum malaria in the Peruvian Amazon. Am J Trop Med Hyg 74: 311. [Google Scholar]
  8. Yanoviak SP, Paredes JE, Lounibos LP, Weaver SC, , 2006. Deforestation alters phytotelm habitat availability and mosquito production in the Peruvian Amazon. Ecol Appl 16: 18541864.[Crossref] [Google Scholar]
  9. Minakawa N, Omukunda E, Zhou G, Githeko A, Yan G, , 2006. Malaria vector productivity in relation to the highland environment in Kenya. Am J Trop Med Hyg 75: 448453. [Google Scholar]
  10. Fahrig L, , 2003. Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34: 487515.[Crossref] [Google Scholar]
  11. Allan BF, Keesing F, Ostfeld RS, , 2003. Effect of forest fragmentation on Lyme disease risk. Conserv Biol 17: 267272.[Crossref] [Google Scholar]
  12. Brownstein JS, Skelly DK, Holford TR, Fish D, , 2005. Forest fragmentation predicts local scale heterogeneity of Lyme disease risk. Oecologia 146: 469475.[Crossref] [Google Scholar]
  13. Wasserberg G, Yarom I, Warburg A, , 2003. Seasonal abundance patterns of the sandfly Phlebotomus papatasi in climatically distinct foci of cutaneous leishmaniasis in Israeli desert. Med Vet Entomol 17: 452456.[Crossref] [Google Scholar]
  14. Forman HTT, Godron M, , 1986. Landscape Ecology. New York: John Wiley and Sons, Inc. [Google Scholar]
  15. Whitlaw JT, Chaniotis BN, , 1978. Palm trees and Chagas disease in Panama. Am J Trop Med Hyg 27: 873881. [Google Scholar]
  16. Christensen HA, Devasquez AM, , 1981. Host feeding profiles of Rhodnius pallescens (Hemiptera, Reduviidae) in rural villages of Central Panama. Am J Trop Med Hyg 30: 278283. [Google Scholar]
  17. Zeledon R, Ugalde JA, Paniagua LA, , 2001. Entomological and ecological aspects of six sylvatic species of triatomines (Hemiptera, Reduviidae) from the collection of the National Biodiversity Institute of Costa Rica, Central America. Mem Inst Oswaldo Cruz 96: 757764.[Crossref] [Google Scholar]
  18. Zeledon R, Marin F, Calvo N, Lugo E, Valle S, , 2006. Distribution and ecological aspects of Rhodnius pallescens in Costa Rica and Nicaragua and their epidemiological implications. Mem Inst Oswaldo Cruz 101: 7579. [Google Scholar]
  19. Zeledon R, Rabinovich JE, , 1981. Chagas' disease: an ecological appraisal with special emphasis on its insect vectors. Annu Rev Entomol 26: 101133.[Crossref] [Google Scholar]
  20. Tarleton RL, Reithinger R, Urbina JA, Kitron U, Gurtler RE, , 2007. The challenges of Chagas disease – grim outlook or glimmer of hope. PLoS Med 4: e332.[Crossref] [Google Scholar]
  21. Gurtler RE, Diotaiuti L, Kitron U, , 2008. Commentary: Chagas disease: 100 years since discovery and lessons for the future. Int J Epidemiol 37: 698701.[Crossref] [Google Scholar]
  22. Dias Fernando BS, Bezerra CM, Machado EMM, Casanova C, Diotaiuti L, , 2008. Ecological aspects of Rhodnius nasutus Stal, 1859 (Hemiptera: Reduviidae: Triatominae) in palms of the Chapada do Araripe in Ceara, Brazil. Mem Inst Oswaldo Cruz 103: 824830.[Crossref] [Google Scholar]
  23. Fitzpatrick S, Feliciangeli MD, Sanchez-Martin MJ, Monteiro FA, Miles MA, , 2008. Molecular genetics reveal that sylvatic Rhodnius prolixus do colonise rural houses. PLoS Negl Trop Dis 2: e210.[Crossref] [Google Scholar]
  24. Medina M, Martínez C, Hernandez M, Duque N, Toyo J, Rangel R, , 2007. Risk factors for Trypanosoma cruzi human infection in Barinas State, Venezuela. Am J Trop Med Hyg 76: 915921. [Google Scholar]
  25. Sanchez-Martin MJ, Feliciangeli MD, Campbell-Lendrum D, Davies CR, , 2006. Could the Chagas disease elimination programme in Venezuela be compromised by reinvasion of houses by sylvatic Rhodnius prolixus bug populations? Trop Med Int Health 11: 15851593.[Crossref] [Google Scholar]
  26. Abad-Franch F, Palomeque FS, Aguilar HM IV, Miles MA, , 2005. Field ecology of sylvatic Rhodnius populations (Heteroptera, Triatominae): risk factors for palm tree infestation in western Ecuador. Trop Med Int Health 10: 12581266.[Crossref] [Google Scholar]
  27. Vasquez AM, Samudio FE, Saldaña A, Paz HM, Calzada JE, , 2004. Eco- epidemiological aspects of Trypanosoma cruzi, Trypanosoma rangeli and their vector (Rhodnius pallescens) in Panama. Rev Inst Med Trop Sao Paulo 46: 217222.[Crossref] [Google Scholar]
  28. Wright SJ, Duber HC, , 2001. Poachers and forest fragmentation alter seed dispersal, seed survival, and seedling recruitment in the palm Attalea butyracea, with implications for tropical tree diversity. Biotropica 33: 583595.[Crossref] [Google Scholar]
  29. Condit RW, Robinson D, Ibez R, Aguilar S, Sanjur A, Martínez R, Stallard RF, García T, Angehr GR, Petit L, Wright SJ, Robinson T, Heckadon MS, , 2001. The status of the Panama Canal watershed and its biodiversity at the beginning of the 21st century. Bioscience 51: 389398.[Crossref] [Google Scholar]
  30. Ibanez R, Condit R, Angehr G, Aguilar S, Garcia T, Martinez R, Sanjur A, Stallard RF, Wright SJ, Stanley A, Heckadon-Moreno S, , 2002. An ecosystem report on the Panama Canal: monitoring the status of the forest communities and the watershed. Environ Monit Assess 80: 6595.[Crossref] [Google Scholar]
  31. Calzada JE, Pineda V, Montalvo E, Alvarez D, Santamaria AM, Samudio F, Bayard V, Cáceres L, Saldaña A, , 2006. Human trypanosome infection and the presence of intradomicile Rhodnius pallescens in the western border of the Panama Canal, Panama. Am J Trop Med Hyg 74: 762765. [Google Scholar]
  32. Abad-Franch F, Monteiro FA, Jaramillo ON, Gurgel-Goncalves R, Dias FB, Diotaiuti L, , 2009. Ecology, evolution, and the long-term surveillance of vector-borne Chagas disease: a multi-scale appraisal of the tribe Rhodniini (Triatominae). Acta Trop 110: 159177.[Crossref] [Google Scholar]
  33. Holdridge LR, , 1967. Life Zone Ecology. San Jose, Costa Rica: Tropical Science Center. [Google Scholar]
  34. Gomez-Nunez JC, , 1969. Resting places, dispersal and survival of CO60-tagged adult Rhodnius prolixus . J Med Entomol 6: 8386.[Crossref] [Google Scholar]
  35. Noireau F, Flores R, Vargas F, , 1999. Trapping sylvatic Triatominae (Reduviidae) in hollow trees. Trans R Soc Trop Med Hyg 93: 1314.[Crossref] [Google Scholar]
  36. Abad-Franch F, Noireau F, Paucar A, Aguilar HM, Carpio C, Racines J, , 2000. The use of live-bait traps for the study of sylvatic Rhodnius populations (Hemiptera: Reduviidae) in palm trees. Trans R Soc Trop Med Hyg 94: 629630.[Crossref] [Google Scholar]
  37. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MH, White JS, , 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24: 127135.[Crossref] [Google Scholar]
  38. Laird NM, Ware JH, , 1982. Random-effects models for longitudinal data. Biometrics 38: 963974.[Crossref] [Google Scholar]
  39. Romana CA, Pizarro JC, Rodas E, Guilbert E, , 1999. Palm trees as ecological indicators of risk areas for Chagas disease. Trans R Soc Trop Med Hyg 93: 594595.[Crossref] [Google Scholar]
  40. Teixeira AR, Monteiro PS, Rebelo JM, Rebelo JM, Argañaraz ER, Vieira D, Lauria-Pires L, Nascimento R, Vexenat CA, Silva AR, Ault SK, Costa JM, , 2001. Emerging Chagas disease: trophic network and cycle of transmission of Trypanosoma cruzi from palm trees in the Amazon. Emerg Infect Dis 7: 100112.[Crossref] [Google Scholar]
  41. Abad-Franch F, Ferraz G, Campos C, Palomeque FS, Grijalva MJ, Aguilar HM, Miles MA, , 2010. Modeling disease vector occurrence when detection is imperfect: infestation of Amazonian palm trees by Triatomine bugs at three spatial scales. PLoS Negl Trop Dis 4: e620.[Crossref] [Google Scholar]
  42. Bar ME, Wisnivesky-Colli C, , 2001. Triatoma sordida Stal 1859 (Hemiptera, Reduviidae: Triatominae) in palms of northeastern Argentina. Mem Inst Oswaldo Cruz 96: 895899.[Crossref] [Google Scholar]
  43. Gurgel-Goncalves R, Palma AR, Menezes MN, Leite RN, Cuba CA, , 2003. Sampling Rhodnius neglectus in Mauritia flexuosa palm trees: a field study in the Brazilian savanna. Med Vet Entomol 17: 347350.[Crossref] [Google Scholar]
  44. Jabin D, , 2001. Le Palmier Attalea butyracea comme Indicateur du Risque Ecologique de la Trypanosomose Americaine dans la Province de Panama. Report to the Laboratory. Paris: IRD-CEREG. [Google Scholar]
  45. D'Alessandro A, Barreto P, Saravia N, Barreto M, , 1984. Epidemiology of Trypanosoma cruzi in the oriental plains of Colombia. Am J Trop Med Hyg 33: 10841095. [Google Scholar]
  46. Gurgel-Goncalves R, Duarte MA, Ramalho ED, Palma AR, Romana CA, Cuba-Cuba CA, , 2004. Spatial distribution of Triatominae populations (Hemiptera: Reduviidae) in Mauritia flexuosa palm trees in Federal District of Brazil. Rev Soc Bras Med Trop 37: 241247.[Crossref] [Google Scholar]
  47. Terborgh J, Lopez L, Nuñez P, Rao M, Shahabuddin G, Orihuela G, Riveros M, Ascanio R, Adler GH, Lambert TD, Balbas L, , 2001. Ecological meltdown in predator-free forest fragments. Science 294: 19231926.[Crossref] [Google Scholar]
  48. Gascon C, Lovejoy TE, Bierregaard RO, Malcolm JR, Stouffer PC, Vasconcelos HL, Laurance WF, Zimmerman B, Tocher M, Borges S, , 1999. Matrix habitat and species richness in tropical forest remnants. Biol Conserv 91: 223229.[Crossref] [Google Scholar]
  49. Goodrich JM, Buskirk SW, , 1995. Control of abundant native vertebrates for conservation of endangered species. Conserv Biol 9: 13571364.[Crossref] [Google Scholar]
  50. Laurance WF, Laurance SG, Hilbert DW, , 2008. Long-term dynamics of a fragmented rainforest mammal assemblage. Conserv Biol 22: 11541164.[Crossref] [Google Scholar]
  51. Luz C, Fargues J, , 1999. Dependence of the entomopathogenic fungus, Beauveria bassiana, on high humidity for infection of Rhodnius prolixus . Mycopathologia 146: 3341.[Crossref] [Google Scholar]
  52. Fargues J, Luz C, , 2000. Effects of fluctuating moisture and temperature regimes on the infection potential of Beauveria bassiana for Rhodnius prolixus . J Invertebr Pathol 75: 202211.[Crossref] [Google Scholar]
  53. Ceballos LA, Vazquez-Prokopec GM, Cecere MC, Marcet PL, Gürtler RE, , 2005. Feeding rates, nutritional status and flight dispersal potential of peridomestic populations of Triatoma infestans in rural northwestern Argentina. Acta Trop 95: 149159.[Crossref] [Google Scholar]
  54. Chaves LF, Cohen JM, Pascual M, Wilson ML, , 2008. Social exclusion modifies climate and deforestation impacts on a vector-borne disease. PLoS Negl Trop Dis 2: e176.[Crossref] [Google Scholar]
  55. Vazquez-Prokopec GM, Ceballos LA, Marcet PL, Cecere MC, Cardinal MV, Kitron U, Gürtler RE, , 2006. Seasonal variations in active dispersal of natural populations of Triatoma infestans in rural north-western Argentina. Med Vet Entomol 20: 273279.[Crossref] [Google Scholar]
  56. Cardinal MV, Lauricella MA, Ceballos LA, Lanati L, Marcet PL, Levin MJ, Kitron U, Gürtler RE, Schijman AG, , 2008. Molecular epidemiology of domestic and sylvatic Trypanosoma cruzi infection in rural northwestern Argentina. Int J Parasitol 38: 153315.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2011.10-0041
Loading
/content/journals/10.4269/ajtmh.2011.10-0041
Loading

Data & Media loading...

  • Received : 20 Jan 2010
  • Accepted : 16 Oct 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error