1921
Volume 84, Issue 2_Suppl
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Merozoite surface protein 1 (MSP-1) is a polymorphic malaria protein with functional domains involved in parasite erythrocyte interaction. MSP-1 has a fragment (200L) that has been identified as a potential subunit vaccine because it is highly immunogenic and induces partial protection against infectious parasite challenge in vaccinated monkeys. To determine the extent of genetic polymorphism and its effect on the translated protein, we sequenced the 200L coding region from isolates of 26 -infected patients in a malaria-endemic area of Colombia. The extent of nucleotide diversity (π) in these isolates (0.061 ± 0.004) was significantly lower ( ≤ 0.001) than that observed in Thai and Brazilian isolates; 0.083 ± 0.006 and 0.090 ± 0.006, respectively. We found two new alleles and several previously unidentified dimorphic substitutions and significant size polymorphism. The presence of highly conserved blocks in this fragment has important implications for the development of 200L as a subunit vaccine candidate.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2011.09-0517
2011-02-04
2018-12-11
Loading full text...

Full text loading...

/deliver/fulltext/14761645/84/2_Suppl/64.html?itemId=/content/journals/10.4269/ajtmh.2011.09-0517&mimeType=html&fmt=ahah

References

  1. Guerra CA, Hay SI, Lucioparedes LS, Gikandi PW, Tatem AJ, Noor AM, Snow RW, , 2007. Assembling a global database of malaria parasite prevalence for the Malaria Atlas Project. Malar J 6: 17.[Crossref] [Google Scholar]
  2. Mendis K, Sina BJ, Marchesini P, Carter R, , 2001. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64: 97106. [Google Scholar]
  3. Korenromp E, Miller J, Nahlen B, Wardlaw T, Young M, , 2005. World malaria report. RBM/WHO/UNICEF, ed. Geneva, Switzerland: Roll Back Malaria, 1214. [Google Scholar]
  4. Subdirección de Vigilancia y Control en Salud Pública INdS, 2006. Informe del VI período epidemiológico: malaria. SIVIGILA Semanas 1–24: 2125. [Google Scholar]
  5. Herrera S, Bonelo A, Perlaza BL, Fernandez OL, Victoria L, Lenis AM, Soto L, Hurtado H, Acuna LM, Velez JD, Palacios R, Chen-Mok M, Corradin G, Arévalo-Herrera M, , 2005. Safety and elicitation of humoral and cellular responses in Colombian malaria-naive volunteers by a Plasmodium vivax circumsporozoite protein-derived synthetic vaccine. Am J Trop Med Hyg 73: 39. [Google Scholar]
  6. Polley SD, McRobert L, Sutherland CJ, , 2004. Vaccination for vivax malaria: targeting the invaders. Trends Parasitol 20: 99102.[Crossref] [Google Scholar]
  7. Valderrama-Aguirre A, Quintero G, Gomez A, Castellanos A, Perez Y, Mendez F, Arévalo-Herrera M, Herrera S, , 2005. Antigenicity, immunogenicity, and protective efficacy of Plasmodium vivax MSP1 Pv200L: a potential malaria vaccine subunit. Am J Trop Med Hyg 73: 1624. [Google Scholar]
  8. Genton B, Al-Yaman F, Betuela I, Anders RF, Saul A, Baea K, Mellombo M, Taraika J, Brown GV, Pye D, Irving DO, Felger I, Beck HP, Smith TA, Alpers MP, , 2003. Safety and immunogenicity of a three-component blood-stage malaria vaccine (MSP1, MSP2, RESA) against Plasmodium falciparum in Papua New Guinean children. Vaccine 22: 3041.[Crossref] [Google Scholar]
  9. Guttinger M, Romagnoli P, Vandel L, Meloen R, Takacs B, Pink JR, Sinigaglia F, , 1991. HLA polymorphism and T cell recognition of a conserved region of p190, a malaria vaccine candidate. Int Immunol 3: 899906.[Crossref] [Google Scholar]
  10. Putaporntip C, Jongwutiwes S, Sakihama N, Ferreira MU, Kho WG, Kaneko A, Kanbara H, Hattori T, Tanabe K, , 2002. Mosaic organization and heterogeneity in frequency of allelic recombination of the Plasmodium vivax merozoite surface protein-1 locus. Proc Natl Acad Sci USA 99: 1634816353.[Crossref] [Google Scholar]
  11. Putaporntip C, Jongwutiwes S, Tanabe K, Thaithong S, , 1997. Interallelic recombination in the merozoite surface protein 1 (MSP-1) gene of Plasmodium vivax from Thai isolates. Mol Biochem Parasitol 84: 4956.[Crossref] [Google Scholar]
  12. Gonzalez JM, Olano V, Vergara J, Arévalo-Herrera M, Carrasquilla G, Herrera S, Lopez JA, , 1997. Unstable, low-level transmission of malaria on the Colombian Pacific Coast. Ann Trop Med Parasitol 91: 349358.[Crossref] [Google Scholar]
  13. Snounou G, , 1996. Detection and identification of the four malaria parasite species infecting humans by PCR amplification. Methods Mol Biol 50: 263291. [Google Scholar]
  14. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL, , 2007. GenBank. Nucleic Acids Res 35: 2125.[Crossref] [Google Scholar]
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG, , 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 48764882.[Crossref] [Google Scholar]
  16. Kumar S, Tamura K, Nei M, , 2004. MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5: 150163.[Crossref] [Google Scholar]
  17. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R, , 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 24962497.[Crossref] [Google Scholar]
  18. Tajima F, , 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585595. [Google Scholar]
  19. Fu YX, Li WH, , 1993. Statistical tests of neutrality of mutations. Genetics 133: 693709. [Google Scholar]
  20. Nei M, Gojobori T, , 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3: 418426. [Google Scholar]
  21. Nei M, Kumar S, , 2000. Molecular Evolution and Phylogenetics. New York: Oxford University Press. [Google Scholar]
  22. Saitou N, Nei M, , 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406425. [Google Scholar]
  23. Caro-Aguilar I, Rodriguez A, Calvo-Calle JM, Guzman F, De la Vega P, Patarroyo ME, Galinski MR, Moreno A, , 2002. Plasmodium vivax promiscuous T-helper epitopes defined and evaluated as linear peptide chimera immunogens. Infect Immun 70: 34793492.[Crossref] [Google Scholar]
  24. Tanabe K, Escalante A, Sakihama N, Honda M, Arisue N, Horii T, Culleton R, Hayakawa T, Hashimoto T, Longacre S, Pathirana S, Handunnetti S, Kishino H, , 2007. Recent independent evolution of msp1 polymorphism in Plasmodium vivax and related simian malaria parasites. Mol Biochem Parasitol 156: 7479.[Crossref] [Google Scholar]
  25. Nogueira PA, Alves FP, Fernandez-Becerra C, Pein O, Santos NR, Pereira da Silva LH, Camargo EP, del Portillo HA, , 2006. A reduced risk of infection with Plasmodium vivax and clinical protection against malaria are associated with antibodies against the N terminus but not the C terminus of merozoite surface protein 1. Infect Immun 74: 27262733.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2011.09-0517
Loading
/content/journals/10.4269/ajtmh.2011.09-0517
Loading

Data & Media loading...

  • Received : 02 Sep 2009
  • Accepted : 23 Dec 2009

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error