Volume 83, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Southern California remains an important focus of West Nile virus (WNV) activity, with persistently elevated incidence after invasion by the virus in 2003 and subsequent amplification to epidemic levels in 2004. Eco-epidemiological studies of vectors-hosts-pathogen interactions are of paramount importance for better understanding of the transmission dynamics of WNV and other emerging mosquito-borne arboviruses. We investigated vector-host interactions and host-feeding patterns of 531 blood-engorged mosquitoes in four competent mosquito vectors by using a polymerase chain reaction (PCR) method targeting mitochondrial DNA to identify vertebrate hosts of blood-fed mosquitoes. Diagnostic testing by cell culture, real-time reverse transcriptase-PCR, and immunoassays were used to examine WNV infection in blood-fed mosquitoes, mosquito pools, dead birds, and mammals. Prevalence of WNV antibodies among wild birds was estimated by using a blocking enzyme-linked immunosorbent assay. Analyses of engorged revealed that this mosquito species acquired 88.4% of the blood meals from avian and 11.6% from mammalian hosts, including humans. Similarly, fed 82% on birds and 18% on mammals. fed on both birds (59%) and mammals (41%). In contrast, acquired all blood meals from avian hosts. House finches and a few other mostly passeriform birds served as the main hosts for the blood-seeking mosquitoes. Evidence of WNV infection was detected in mosquito pools, wild birds, dead birds, and mammals, including human fatalities during the study period. Our results emphasize the important role of house finches and several other passeriform birds in the maintenance and amplification of WNV in southern California, with acting as both the principal enzootic and “bridge vector” responsible for the spillover of WNV to humans. Other mosquito species, such as and are important but less widely distributed, and also contribute to spatial and temporal transmission of WNV in southern California.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Reisen WK, Lothrop HD, Chiles RE, Madon MB, Cossen C, Woods L, Husted S, Kramer VL, Edman JD, , 2004. West Nile virus in California. Emerg Infect Dis 10: 13691378.[Crossref] [Google Scholar]
  2. Cummings RF, Bennett SG, Cisneros B, De Collibus K, Flores D, Fogarty C, Francisco J, Havickhorst R, Herrera C, Jozan M, Krueger L, McLaughlin T, Morgan T, Nguyen K, Parker T, Reynolds T, Stephens K, Tilzer A, Velten R, , 2009. West Nile virus resurgence in Orange County, California, during 2008. Proc Calif Mosq Vector Control Assoc 77: 116128. [Google Scholar]
  3. Kluh S, Wilson J, O'Connor P, Morales H, Posey T, Vetrone S, Reisen WK, , 2009. Recrudescence of West Nile virus in Los Angeles. Proc Calif Mosq Vector Control Assoc 77: 5264. [Google Scholar]
  4. Kwan J, Kluh S, Madon MB, Reisen WK, , 2010. West Nile virus emergence and persistence in Greater Los Angeles, California, 2003–2008. Am J Trop Med 83: 400412.[Crossref] [Google Scholar]
  5. Hardy JL, Reeves WC, Reeves WC, , 1990. Experimental studies on infection in vectors. , ed.Epidemiology and Control of Mosquito-Borne Arboviruses in California, 1943–1987. Sacramento, CA: California Vector Control Association, 145250. [Google Scholar]
  6. Goddard LB, Roth AE, Reisen WK, Scott TW, , 2002. Vector competence of California mosquitoes for West Nile virus. Emerg Infect Dis 8: 13851391.[Crossref] [Google Scholar]
  7. Reisen WK, Fang Y, Martinez M, , 2005. Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission. J Med Entomol 42: 367375.[Crossref] [Google Scholar]
  8. Reisen WK, Meyer RP, Tempelis CH, Spoehel JJ, , 1990. Mosquito abundance and bionomics in residential communities in Orange and Los Angeles Counties, California. J Med Entomol 27: 356367.[Crossref] [Google Scholar]
  9. Screiber ET, Webb JP, Jr Hazzelrigg JE, Mulla MS, , 1989. Bionomics of adult mosquitoes associated with urban residential areas in the Los Angeles Basin, California. Bull Soc Vector Ecol 14: 301318. [Google Scholar]
  10. Reisen WK, Pfuntner AR, , 1987. Effectiveness of five methods for sampling Culex mosquitoes in rural and urban habitats in San Bernardino County, California. J Am Mosq Control Assoc 3: 601606. [Google Scholar]
  11. Mian LS, Mulla MS, Axelrod H, Chaney JD, Dhillon MS, , 1990. Studies on the bioecological aspects of adult mosquitoes in the Prado Basin of southern California. J Am Mosq Control Assoc 6: 6471. [Google Scholar]
  12. Walton WE, Schreiber ET, Mulla MS, , 1990. Distribution of Culex tarsalis larvae in a freshwater marsh in Orange County, California. J Am Mosq Control Assoc 6: 539543. [Google Scholar]
  13. Walton WE, Workman PD, Randall LE, Jiannino JA, Offill YA, , 1998. Effectiveness of control measures against mosquitoes at a constructed wetland in southern California. J Vector Ecol 23: 149160. [Google Scholar]
  14. Bohart RM, Washino RK, , 1978. Mosquitoes of California, Berkeley, CA: University of California, Division of Agricultural Sciences, 153. [Google Scholar]
  15. Cope SE, Barr AR, Bangs MJ, Morrison AC, Guptavanij P, , 1986. Human bait collections of mosquitoes in a southern California freshwater marsh. Proc Calif Mosq Vector Control Assoc 54: 110112. [Google Scholar]
  16. Rohe DL, Fall RP, , 1979. A miniature battery-powered CO2-baited trap for mosquito-borne encephalitis surveillance. Bull Soc Vector Ecol 4: 2427. [Google Scholar]
  17. Cummings RF, , 1992. The design and use of a modified Reiter gravid mosquito trap for mosquito-borne encephalitis surveillance in Los Angeles County, California. Proc Calif Mosq Vector Control Assoc 60: 170176. [Google Scholar]
  18. Meyer RP, , 1985. The “walk-in” type red box for sampling adult mosquitoes. Proc N J Mosq Extermin Soc 72:104105. [Google Scholar]
  19. Meyer RP, , 2003. Regional Guide to the Common Mosquitoes of California: Coastal. Sacramento, CA: Calif Mosq Vector Control Assoc. [Google Scholar]
  20. Molaei G, Andreadis TG, Armstrong PM, Anderson JF, Vossbrinck CR, , 2006. Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerg Infect Dis 12: 468474.[Crossref] [Google Scholar]
  21. Molaei G, Andreadis TG, , 2006. Identification of avian- and mammalian-derived bloodmeals in Aedes vexans and Culiseta melanura (Diptera: Culicidae) and its implication for West Nile virus transmission in Connecticut, USA. J Med Entomol 43: 10881093.[Crossref] [Google Scholar]
  22. Molaei G, Andreadis TG, Armstrong PM, Diuk-Wasser M, , 2008. Host-feeding patterns of potential mosquito vectors in Connecticut, USA: molecular analysis of bloodmeals from 23 species of Aedes, Anopheles, Culex, Coquillettidia, Psorophora, and Uranotaenia . J Med Entomol 45: 11431151.[Crossref] [Google Scholar]
  23. Andreadis TG, Anderson JF, Vossbrinck CR, Main AJ, , 2004. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999–2003. Vector Borne Zoonotic Dis 44: 360378.[Crossref] [Google Scholar]
  24. Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM, Komar N, Panella NA, Allen BC, Volpe KE, Davis BS, Roehrig JT, , 2000. Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol 8: 40664071. [Google Scholar]
  25. Shi PY, Kauffman EB, Ren P, Felton A, Tai JH, Dupuis AP, 2nd Jones SA, Ngo KA, Nicholas DC, Maffei J, Ebel GD, Barnard KA, Kramer LD, , 2001. High-throughput detection of West Nile virus RNA. J Clin Microbiol 39: 12641271.[Crossref] [Google Scholar]
  26. Steele KE, Linn MJ, Schoepp RJ, Komar N, Geisbert TW, Manduca RM, Callee PP, Raphael BL, Clippinger TL, Larson T, Smith J, Lanciotti RS, Panella NA, McNamara TS, , 2000. Pathology of fatal West Nile virus infections in native and exotic birds during the 1999 outbreak in New York City, New York. Vet Pathol 37: 208224.[Crossref] [Google Scholar]
  27. McClure E, , 1984. Bird Banding. Pacific Grove, CA: Boxwood Press, 493496. [Google Scholar]
  28. Gruwell JA, Fogarty CL, Bennett SG, Challet GL, Vanderpool KS, Jozan M, Webb JP, Jr, 2000. Role of peridomestic birds in the transmission of St. Louis encephalitis virus in southern California. J Wildl Dis 36: 1334.[Crossref] [Google Scholar]
  29. Hall RA, Broom AK, Hartnett AC, Howard MJ, Mackenzie JS, , 1995. Immunodominant epitopes on the NS1 protein of MVE and KUN viruses serve as targets for a blocking ELISA to detect virus-specific antibodies in sentinel animal serum. J Virol Methods 51: 201210.[Crossref] [Google Scholar]
  30. Jozan M, Evans R, McLean R, Hall R, Tangredi B, Reed L, Scott J, , 2003. Detection of West Nile virus infection in birds in the United States by blocking ELISA and immunohistochemisty. Vector Borne Zoonotic Dis 3: 99110.[Crossref] [Google Scholar]
  31. Broom AK, Hall RA, Johansen CA, Oliveira N, Howard MA, Lindsay MD, Kay BH, Mackenzie JS, , 1998. Identification of Australian arboviruses in inoculated cell cultures using monoclonal antibodies in ELISA. Pathology 30: 286288.[Crossref] [Google Scholar]
  32. Hunt AR, Hall RA, Kerst AJ, Nasci RS, Savage HM, Panella NA, Gottfried KL, Burkhalter KL, Roehrig JT, , 2002. Detection of West Nile virus antigen in mosquitoes and avian tissues by a monoclonal antibody-based capture enzyme immunoassay. J Clin Microbiol 40: 20232030.[Crossref] [Google Scholar]
  33. McLaughlin T, Jozan M, Velten R, Morgan T, Fogarty C, Cummings R, , 2009. Virus isolation and antibody determination in wild birds collected in Orange County, 2008. Proc Calif Mosq Vector Control Assoc 77: 98107. [Google Scholar]
  34. McCaughey K, Miles SQ, Woods L, Chiles RE, Hom A, Kramer VL, Jay-Russell M, Sun B, Reisen WK, Scott T, Hui L, Steinlein D, Castro M, Houchin A, Husted S, , 2003. The California West Nile virus dead bird surveillance program. Proc Calif Mosq Vector Control Assoc 71: 3843. [Google Scholar]
  35. Biggerstaff BJ, , 2006. PooledInfRate: a Microsoft Excel add-in to compute prevalence estimates from pooled samples. Available at: http://www.cdc.gov/ncidod/dvbid/westnile/software.htm. Accessed July 7, 2010. [Google Scholar]
  36. Gorenzal WP, Salmon TP, Simmons GD, Barkhouse B, Quinsenberry MP, , 2000. Urban crow roosts – a nationwide phenomenom? Wildlife Damage Manage Conf Proc 9: 158170. Available at: http://digitalcommons.unl.edu/icwdm_wdmconfproc/25/. Accessed Aug 8, 2010. [Google Scholar]
  37. Reisen WK, , 2010. Landscape epidemiology of vector-borne diseases. Annu Rev Entomol 55: 461483.[Crossref] [Google Scholar]
  38. Tempelis CH, Reeves WC, , 1964. Feeding habits of one anopheline and three culicine mosquitoes by the precipitin test. J Med Entomol 1: 148151.[Crossref] [Google Scholar]
  39. Reisen WK, Milby MM, Presser SB, Hardy JL, , 1992. Ecology of mosquitoes and St. Louis encephalitis virus in the Los Angeles basin of California, 1987–1990. J Med Entomol 29: 582598.[Crossref] [Google Scholar]
  40. Lee DJ, Clinton KJ, O'Gower AK, , 1954. The blood sources of some Australian mosquitoes. Aust J Biol Sci 7: 282301.[Crossref] [Google Scholar]
  41. Tempelis CH, Hayes RO, Hess AD, Reeves WC, , 1970. The blood feeding patterns of four species of mosquitoes found in Hawaii. Am J Trop Med Hyg 19: 335341. [Google Scholar]
  42. Kay BH, Boreham PF, William GM, , 1979. Host preference and feeding patterns of mosquitoes (Diptera: Culicidae) at Kowanyama, Cape York Peninsula, northern Queensland. Bull Entomol Res 69: 441457.[Crossref] [Google Scholar]
  43. Kay BH, Boreham PF, Fanning ID, , 1985. Host-feeding patterns of Culex annulirostris and other mosquitoes (Diptera: Culicidae) at Charleville, southwestern Queensland, Australia. J Med Entomol 22: 529535.[Crossref] [Google Scholar]
  44. Samuel PP, Arunachalam N, Hiriyan J, Thenmozhi V, Gajanana A, Satyanarayana K, , 2004. Host-feeding pattern of Culex quinquefasciatus Say and Mansonia annulifera (Theobald) (Diptera: Culicidae), the major vectors of filariasis in a rural area of south India. J Med Entomol 41: 442446.[Crossref] [Google Scholar]
  45. Zinser M, Ramberg F, Willott E, , 2004. Culex quinquefasciatus (Diptera: Culicidae) as a potential West Nile virus vector in Tucson, Arizona: blood meal analysis indicates feeding on both humans and birds. J Insect Sci 4: 20.[Crossref] [Google Scholar]
  46. Molaei G, Andreadis TG, Armstrong PM, Bueno R, Jr Dennett JA, Real SV, Sargent C, Bala A, Randle Y, Guzman H, Travasso da Rosa A, Wuithiranyagool T, Tesh RB, , 2007. Host feeding pattern of Culex quinquefasciatus (Diptera: Culicidae) and its role in transmission of West Nile virus in Harris County, Texas. Am J Trop Med Hyg 77: 7381. [Google Scholar]
  47. Beier JC, Odago WO, Onyango FK, Asiago CM, Koech DK, Roberts CR, , 1990. Relative abundance and blood feeding behavior of nocturnally active culicine mosquitoes in western Kenya. J Am Mosq Control Assoc 6: 207212. [Google Scholar]
  48. Niebylski ML, Meek CL, , 1992. Blood-feeding of Culex mosquitoes in an urban environment. J Am Mosq Control Assoc 8: 173177. [Google Scholar]
  49. Gomes AC, Silva NN, Marques GR, Brito M, , 2003. Host-feeding patterns of potential human disease vectors in the Paraiba Valley region, State of Sao Paulo, Brazil. J Vector Ecol 28: 7478. [Google Scholar]
  50. Tempelis CH, , 1964. Current knowledge of feeding habits of California mosquitoes. Proc Calif Mosq Control Assoc 32: 3942. [Google Scholar]
  51. Tempelis CH, Reeves WC, Bellamy RE, Lofy MF, , 1965. A three-year study of the feeding habits of Culex tarsalis in Kern County, California. Am J Trop Med Hyg 14: 170177. [Google Scholar]
  52. Tempelis CH, , 1975. Host-feeding patterns of mosquitoes with a review of advances in analysis of blood meals by serology. J Med Entomol 11: 635653.[Crossref] [Google Scholar]
  53. Washino RK, Tempelis CH, , 1983. Mosquito host bloodmeal identification: methodology and data analysis. Annu Rev Entomol 28: 179201.[Crossref] [Google Scholar]
  54. Hayes RO, Tempelis CH, Hess AD, Reeves WC, , 1973. Mosquito host preference studies in Hale County, Texas. Am J Trop Med Hyg 22: 270277. [Google Scholar]
  55. Hess AD, Hayes RO, Tempelis CH, , 1968. The use of the forage ratio technique in mosquito host preference studies. Mosq News 28: 386389. [Google Scholar]
  56. Kent R, Juliusson L, Weissmann M, Evans S, Komar N, , 2009. Seasonal blood-feeding behavior of Culex tarsalis (Diptera: Culicidae) in Weld County, Colorado, 2007. J Med Entomol 46: 380390.[Crossref] [Google Scholar]
  57. Dow RP, Reeves WC, Bellamy RE, , 1957. Field tests of avian host preference of Culex tarsalis Coq. Am J Trop Med Hyg 6: 294303. [Google Scholar]
  58. Henderson BE, Senior L, , 1961. Attack rates of Culex tarsalis on reptiles, amphibians, and small mammals. Mosq News 21: 2932. [Google Scholar]
  59. Reisen WK, Reeves WC, Reeves WC, , 1990. Bionomics and ecology of Culex tarsalis and other potential mosquito vector species. , ed. Epidemiology and Control of Mosquito-Borne Arboviruses in California, 1943–1987. Sacramento, CA: Calif Mosq Vector Control Assoc, 254329. [Google Scholar]
  60. Gerry AC, Nawaey TM, Sanghrajka PB, Wisniewska J, Hullinger P, , 2008. Hematophagous Diptera collected from a horse and paired carbon dioxide-baited suction trap in southern California: relevance to West Nile virus epizootiology. J Med Entomol 45: 115124.[Crossref] [Google Scholar]
  61. Walton WE, Workman PD, Tempelis CH, , 1999. Dispersal, survivorship, and host selection of Culex erythrothorax (Diptera: Culicidae) associated with a constructed wetland in southern California. J Med Entomol 36: 3040.[Crossref] [Google Scholar]
  62. Phillips RA, Christensen K, , 2006. Field-caught Culex erythrothorax larvae found naturally infected with West Nile virus in Grand County, Utah. J Med Entomol 22: 561562. [Google Scholar]
  63. Chapman HC, , 1962. The bio-ecology of Culex erythrothorax Dyar. Mosq News 22: 130134. [Google Scholar]
  64. Reisen WK, Lothrop HD, Wheeler SS, Kensington M, Gutierrez A, Fang Y, Garcia S, Lothrop B, , 2008. Persistent West Nile virus transmission and the apparent displacement St. Louis encephalitis virus in southeastern California, 2003–2006. J Med Entomol 45: 494508.[Crossref] [Google Scholar]
  65. Wright S, Pellegrini A, Wheeler S, Armijos V, Kelley K, Reisen W, Macedo P, , 2009. The house finch, Carpodacus mexicanus, and the establishment of WNV in Sacramento: recrudescence and herd immunity. Proc Calif Mosq Control Assoc 77: 4447. [Google Scholar]
  66. Fang Y, Reisen WK, , 2006. Previous infection with West Nile or St. Louis encephalitis viruses provides cross protection during reinfection in house finches. Am J Trop Med Hyg 75: 480485. [Google Scholar]
  67. Reisen WK, Barker CM, Carney R, Lothrop HD, Wheeler SS, Wilson JL, Madon MB, Takahashi R, Carroll B, Garcia S, Fang Y, Shafi M, Kahl N, Ashtari S, Dramer V, Glaser C, Jean C, , 2006. Role of corvids in epidemiology of West Nile virus in southern California. J Med Entomol 43: 356367.[Crossref] [Google Scholar]
  68. Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M, , 2003. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9: 311322.[Crossref] [Google Scholar]
  69. Dawson JR, Stone WB, Ebel GD, Young DS, Galinski DS, Pensabene JP, Franke MA, Eidson M, Kramer LD, , 2007. Crow deaths caused by West Nile virus during winter. Emerg Infect Dis 13: 19121914.[Crossref] [Google Scholar]
  70. McLean RG, Ubico SR, Docherty DE, Hansen WR, Sileo L, McNamara TS, , 2001. West Nile virus transmission and ecology in birds. Ann N Y Acad Sci 951: 5457.[Crossref] [Google Scholar]
  71. Brault AC, Langevin SA, Bowen R, Panella NA, Biggerstaff BJ, Miller BR, Komar N, , 2004. Differential virulence of West Nile strains for American crows. Emerg Infect Dis 10: 21612168.[Crossref] [Google Scholar]
  72. Eidson M, Komar N, Sorhage F, Nelson R, Talbot T, Mostashari F, McLean R, , West Nile Virus Avian Mortality Surveillance Group, 2001. Crow deaths as a sentinel surveillance system for West Nile virus in the northeastern United States, 1999. Emerg Infect Dis 7: 615620.[Crossref] [Google Scholar]
  73. Komar N, Burns J, Dean C, Panella NA, Dusza S, Cherry B, , 2001. Serologic evidence for West Nile virus infection in birds in Staten Island, New York, after an outbreak in 2000. Vector Borne Zoonotic Dis 1: 191196.[Crossref] [Google Scholar]
  74. Tempelis CH, Francy DB, Hayes RO, Lofy MF, , 1967. Variation in feeding patterns of seven culicine mosquitoes on vertebrate hosts in Weld and Larimer counties, Colorado. Am J Trop Med Hyg 16: 111119. [Google Scholar]
  75. Hess AD, Hayes RO, , 1970. Relative potentials of domestic animals for zooprophylaxis against mosquito vectors of encephalitis. Am J Trop Med Hyg 19: 327334. [Google Scholar]
  76. Reisen WK, Martinez VM, Fang Y, Garcia S, Ashtari S, Wheeler SS, Carroll BD, , 2006. Role of California (Callipepla californica) and Gambel's (Callipepla gambelii) quail in the ecology of mosquito-borne encephalitis viruses in California, USA. Vector Borne Zoonotic Dis 6: 248260.[Crossref] [Google Scholar]
  77. Reisen WK, Carrol BD, Takahasi R, Fang Y, Garcia S, Martinez VM, Quiring R, , 2009. Repeated West Nile virus epidemic transmission in Kern County, California, 2004–2007. J Med Entomol 46: 139157.[Crossref] [Google Scholar]
  78. Beveroth TA, Ward MP, Lampman RL, Ringia AM, Novak RJ, , 2006. Changes in seroprevalence of West Nile virus across Illinois in free-ranging birds from 2001 through 2004. Am J Trop Med Hyg 74: 174179. [Google Scholar]
  79. Webb JP, Medina MJ, Bennett SG, , 1988. Mosquito abundance and arbovirus activity in Orange County, 1987. Proc Papers Mosq Vector Control Assoc Calif 56: 3236. [Google Scholar]
  80. Reisen WK, Takahashi RM, Carroll BD, Quiring R, , 2008. Delinquent mortgages, neglected swimming pools, and West Nile Virus, California. Emerg Infect Dis 15: 508509.[Crossref] [Google Scholar]
  81. Crooks KR, Suarez AV, Bolger DT, , 2004. Avian assemblages along a gradient of urbanization in a highly fragmented landscape. Biol Conserv 115: 451462.[Crossref] [Google Scholar]
  82. Ezenwa VO, Godsey MS, King RJ, Guptill SG, , 2006. Avian diversity and West Nile virus: testing associations between biodiversity and infectious disease risk. Proc Biol Sci 273: 109117.[Crossref] [Google Scholar]
  83. Swaddle JP, Calos SE, , 2008. Increased avian diversity is associated with lower incidence of human West Nile infection: observation of the dilution effect. PLoS ONE 3: e2488.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 09 Jul 2010
  • Accepted : 22 Sep 2010
  • Published online : 06 Dec 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error