Volume 83, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Recent shifts in global health policy have led to the implementation of mass drug administration (MDA) for neglected tropical diseases. Here we show how population genetic analyses can provide vital insights into the impact of such MDA on endemic parasite populations. We show that even a single round of MDA produced a genetic bottleneck with reductions in a range of measures of genetic diversity of . Phylogenetic analyses and indices of population differentiation indicated that schistosomes collected in the same schools in different years were more dissimilar than those from different schools collected within either of the study's 2 years, in addition to distinguishing re-infection from non-clearance (that might indicate putatively resistant parasites) from within those children infected at both baseline and follow-up. Such unique results illustrate the importance of genetic monitoring and examination of long lived multi-cellular parasites such as these under novel or increased chemotherapeutic selective pressures.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Hotez P, Raff S, Fenwick A, Richards F, Molyneux D, , 2007. Recent progress in integrated neglected tropical disease control. Trends Parasitol 23: 511514.[Crossref] [Google Scholar]
  2. Fenwick A, Webster JP, , 2006. Schistosomiasis: challenges for control, treatment and drug resistance. Curr Opin Infect Dis 19: 577582.[Crossref] [Google Scholar]
  3. Webster JP, Gower CM, Norton AJ, , 2008. Application of evolutionary concepts to predicting and evaluating the impact of mass-chemotherapy schistosomiasis control programmes. Evolutionary Applications 1: 6683.[Crossref] [Google Scholar]
  4. King CH, Dickman K, Tisch DJ, , 2005. Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 365: 15611569.[Crossref] [Google Scholar]
  5. Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J, , 2006. Schistosomiasis and water resources development: systematic review, meta-analysis and estimates of people at risk. Lancet Infect Dis 6: 411425.[Crossref] [Google Scholar]
  6. Rollinson D, Kaukas A, Johnston DA, Simpson AJ, Tanaka M, , 1997. Some molecular insights into schistosome evolution. Int J Parasitol 27: 1128.[Crossref] [Google Scholar]
  7. Agola LE, Mburu DN, DeJong RJ, Mungai BN, Muluvi GM, Njagi EN, Loker ES, Mkoji GM, , 2006. Microsatellite typing reveals strong genetic structure of Schistosoma mansoni from localities in Kenya. Infect Genet Evol 6: 484490.[Crossref] [Google Scholar]
  8. Barral V, Morand S, Pointier JP, Theron A, , 1996. Distribution of schistosome genetic diversity within naturally infected Rattus rattus detected by RAPD markers. Parasitology 113: 511517.[Crossref] [Google Scholar]
  9. Curtis J, Minchella D, , 2000. Schistosome population genetic structure: when clumping worms is not just splitting hairs. Parasitol Today 16: 6871.[Crossref] [Google Scholar]
  10. Rollinson D, Webster JP, Nyakanna S, Stothard AJ, Jr, 2009. Genetic diversity of schistosomes and snails: implications for control. Parasitology 136: 18011811.[Crossref] [Google Scholar]
  11. Stothard JR, Webster BL, Weber T, Nyakaana S, Webster JP, Kazibwe F, Kabatereine NB, Rollinson D, , 2009. Molecular epidemiology of Schistosoma mansoni in Uganda: DNA barcoding reveals substantive genetic diversity within Lake Albert and Lake Victoria populations. Parasitology 136: 18131824.[Crossref] [Google Scholar]
  12. Colley DG, LoVerde PT, Savioli L, , 2001. Infectious disease. Medical helminthology in the 21st century. Science 293: 14371438.[Crossref] [Google Scholar]
  13. Fenwick A, Webster JP, Bosque-Oliva E, Blair L, Fleming FM, Zhang Y, Garba A, Stothard JR, Gabrielli AF, Clements AC, Kabatereine NB, Toure S, Dembele R, Nyandindi U, Mwansa J, Koukounari A, , 2009. The Schistosomiasis Control Initiative (SCI): rational, development and implementation from 2002–2008. Parasitology 136: 17191730.[Crossref] [Google Scholar]
  14. Doenhoff MJ, Kusel JR, Coles GC, Cioli D, , 2002. Resistance of Schistosoma mansoni to praziquantel: is there a problem? Trans R Soc Trop Med Hyg 96: 465469.[Crossref] [Google Scholar]
  15. Doenhoff MJ, Pica-Mattoccia L, , 2006. Praziquantel for the treatment of schistosomiasis: its use for control in areas with endemic disease and prospects for drug resistance. Expert Rev Anti Infect Ther 4: 199210.[Crossref] [Google Scholar]
  16. Danso-Appiah A, De Vlas SJ, , 2002. Interpreting low praziquantel cure rates of Schistosoma mansoni infections in Senegal. Trends Parasitol 18: 125129.[Crossref] [Google Scholar]
  17. Alonso D, Munoz J, Gascon J, Valls ME, Corachan M, , 2006. Failure of standard treatment with praziquantel in two returned travelers with Schistosoma haematobium infection. Am J Trop Med Hyg 74: 342344. [Google Scholar]
  18. Gower CM, Shrivastava J, Lamberton PH, Rollinson D, Emory A, Webster BL, Kabatereine NB, Webster JP, , 2007. Development and application of an ethical and epidemiologically appropriate assay for the multi-locus microsatellite analysis of Schistosoma mansoni . Parasitology 134: 523536.[Crossref] [Google Scholar]
  19. Shrivastava J, Gower CM, Balolong E, Jr Wang TP, Qian BZ, Webster JP, , 2005. Population genetics of multi-host parasites—the case for molecular epidemiological studies of Schistosoma japonicum using naturally sampled larval stages. Parasitology 131: 617626.[Crossref] [Google Scholar]
  20. Wang T-P, Shrivastava J, Johansen MV, Zhang ZK, Webster JP, , 2006. Does multiple hosts mean multiple parasites? Population genetic structure of Schistosoma japonicum between definitive host species. Int J Parasitol 36: 13171325.[Crossref] [Google Scholar]
  21. Curtis J, Sorensen RE, Minchella DJ, , 2002. Schistosome genetic diversity: the implications of population structure as detected with microsatellite markers. Parasitology 125: S51S59.[Crossref] [Google Scholar]
  22. Durand P, Sire C, Theron A, , 2000. Isolation of microsatellite markers in the digenetic trematode Schistosoma mansoni from Guadeloupe Island. Mol Ecol 9: 997998.[Crossref] [Google Scholar]
  23. Blair L, Webster JP, Barker GC, , 2001. Isolation and characterization of polymorphic microsatellite markers in Schistosoma mansoni from Africa. Mol Ecol Notes 1: 9395.[Crossref] [Google Scholar]
  24. Lui K, Muse S, , 2005. PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21: 21282129.[Crossref] [Google Scholar]
  25. Goudet J, , 1995. Fstat version 1.2: a computer program to calculate F-statistics. J Hered 86: 485486.[Crossref] [Google Scholar]
  26. Cavalli-Sforza LL, Edwards AW, , 1967. Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet 19: 233257. [Google Scholar]
  27. Langella O, , 1999. Populations 1.2.28 genetic software. CNRS CNRS UPR9034. Available at: www.cnrs-gif.fr/pge. [Google Scholar]
  28. Lewis PO, Zaykin D, , 2001. Genetic data analysis: computer program for the analysis of allelic data, version 1.1. [Google Scholar]
  29. Ardelli BF, Guerriero SB, Pritchard RK, , 2006. Ivermectin imposes selection pressure on P-glycoprotein from Onchocerca volvulus: linkage disequilibrium and genotype diversity. Parasitology 132: 370386. [Google Scholar]
  30. Correa-Oliveira R, Caldas IR, Martins-Filho OA, Queiroz CC, Lambertucci JR, Cunha-Melo JR, Silveira AS, Prata A, Wilson A, Gazzinelli G, , 2000. Analysis of the effects of treatment of human Schistosoma mansoni infection on the immune response of patients in endemic areas. Acta Trop 77: 141146.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 18 May 2010
  • Accepted : 19 Jul 2010
  • Published online : 05 Oct 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error