Volume 83, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Background malaria-control programs are increasingly dependent on accurate risk maps to effectively guide the allocation of interventions and resources. Advances in model-based geostatistics and geographical information systems (GIS) have enabled researchers to better understand factors affecting malaria transmission and thus, more accurately determine the limits of malaria transmission globally and nationally. Here, we construct risk maps for Bangladesh for 2007 at a scale enabling the malaria-control bodies to more accurately define the needs of the program. A comprehensive malaria-prevalence survey ( = 9,750 individuals; = 354 communities) was carried out in 2007 across the regions of Bangladesh known to be endemic for malaria. Data were corrected to a standard age range of 2 to less than 10 years. Bayesian geostatistical logistic regression models with environmental covariates were used to predict prevalence for 2- to 10-year-old children (PR) across the endemic areas of Bangladesh. The predictions were combined with gridded population data to estimate the number of individuals living in different endemicity classes. Across the endemic areas, the average PR was 3.8%. Environmental variables selected for prediction were vegetation cover, minimum temperature, and elevation. Model validation statistics revealed that the final Bayesian geostatistical model had good predictive ability. Risk maps generated from the model showed a heterogeneous distribution of PR ranging from 0.5% to 50%; 3.1 million people were estimated to be living in areas with a PR greater than 1%. Contemporary GIS and model-based geostatistics can be used to interpolate malaria risk in Bangladesh. Importantly, malaria risk was found to be highly varied across the endemic regions, necessitating the targeting of resources to reduce the burden in these areas.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Keiser J, Singer BH, Utzinger J, , 2005. Reducing the burden of malaria in different eco-epidemiological settings with environmental management: a systematic review. Lancet Infect Dis 5: 695708.[Crossref] [Google Scholar]
  2. Ernst K, Adoka S, Kowuor D, Wilson M, John C, , 2006. Malaria hotspot areas in a highland Kenya site are consistent in epidemic and non-epidemic years and are associated with ecological factors. Malar J 5: 78.[Crossref] [Google Scholar]
  3. Brooker S, Leslie T, Kolaczinski K, Mohsen E, Mehboob N, Saleheen S, Khudonazarov J, Freeman T, Clements A, Rowland M, Kolaczinski J, , 2006. Spatial epidemiology of Plasmodium vivax, Afghanistan. Emerg Infect Dis 12: 16001602.[Crossref] [Google Scholar]
  4. Gosoniu L, Vounatsou P, Sogoba N, Maire N, Smith T, , 2009. Mapping malaria risk in West Africa using a Bayesian non-parametric non-stationary model. Comput Stat Data Anal 53: 33583371.[Crossref] [Google Scholar]
  5. Omumbo JA, Hay SI, Snow RW, Tatem AJ, Rogers DJ, , 2005. Modelling malaria risk in East Africa at high-spatial resolution. Trop Med Int Health 10: 557566.[Crossref] [Google Scholar]
  6. Kreuels B, Kobbe R, Adjei S, Kreuzberg C, von Reden C, Bater K, Klug S, Busch W, Adjei O, May J, , 2008. Spatial variation of malaria incidence in young children from a geographically homogeneous area with high endemicity. J Infect Dis 197: 8593.[Crossref] [Google Scholar]
  7. Myers W, Myers A, Cox-Singh J, Lau H, Mokuai B, Malley R, , 2009. Micro-geographic risk factors for malarial infection. Malar J 8: 27.[Crossref] [Google Scholar]
  8. Kazembe L, Kleinschmidt I, Holtz T, Sharp B, , 2006. Spatial analysis and mapping of malaria risk in Malawi using point-referenced prevalence of infection data. Int J Health Geogr 5: 41.[Crossref] [Google Scholar]
  9. Cohen JM, Ernst KC, Lindblade KA, Vulule JM, John CC, Wilson ML, , 2008. Topography-derived wetness indices are associated with household-level malaria risk in two communities in the western Kenyan highlands. Malar J 7: 40.[Crossref] [Google Scholar]
  10. Basáñez M, Marshall C, Carabin H, Gyorkos T, Joseph L, , 2004. Bayesian statistics for parasitologists. Trends Parasitol 20: 8591.[Crossref] [Google Scholar]
  11. Reid HR, Vallely A, Taleo G, Tatem AJ, Kelly G, Riley I, Harris I, Iata H, Yama S, Clements AC, 2010, . Baseline spatial distribution of malaria prior to an elimination program in Vanuatu. Malar J 9: 150.[Crossref] [Google Scholar]
  12. Kleinschmidt I, Bagayoko M, Clarke GP, Craig M, le Sueur D, , 2000. A spatial statistical approach to malaria mapping. Int J Epidemiol 29: 355361.[Crossref] [Google Scholar]
  13. Kleinschmidt I, Sharp BL, Clarke GPY, Curtis B, Fraser C, , 2001. Use of generalized linear mixed models in the spatial analysis of small-area malaria incidence rates in KwaZulu Natal, South Africa. Am J Epidemiol 153: 12131221.[Crossref] [Google Scholar]
  14. Kleinschmidt I, Sharp B, Mueller I, Vounatsou P, , 2002. Rise in malaria incidence rates in South Africa: a small-area spatial analysis of variation in time trends. Am J Epidemiol 155: 257264.[Crossref] [Google Scholar]
  15. Gemperli A, Vounatsou P, Sogoba N, Smith T, , 2006. Malaria mapping using transmission models: application to survey data from Mali. Am J Epidemiol 163: 289297.[Crossref] [Google Scholar]
  16. Noor AM, Clements AC, Gething PW, Moloney G, Borle M, Shewchuk T, Hay SI, Snow RW, , 2008. Spatial prediction of Plasmodium falciparum prevalence in Somalia. Malar J 7: 159.[Crossref] [Google Scholar]
  17. Noor AM, Gething PW, Alegana VA, Patil AP, Hay SI, Muchiri E, Juma E, Snow RW, , 2009. The risks of malaria infection in Kenya in 2009. BMC Infect Dis 9: 180.[Crossref] [Google Scholar]
  18. Gosoniua L, Vounatsoua P, Sogobab N, Mairea N, Smith T, , 2009. Mapping malaria risk in West Africa using a Bayesian nonparametric non-stationary model. Comput Stat Data Anal 53: 33583371.[Crossref] [Google Scholar]
  19. Kleinschmidt I, Omumbo J, Briët O, van de Giesen N, Mensah NK, Windmeijer P, Moussa M, Teuscher T, , 2001. An empirical malaria distribution map for West Africa. Trop Med Int Health 6: 779786.[Crossref] [Google Scholar]
  20. Guerra C, Gikandi P, Tatem A, Noor A, Smith D, Hay S, Snow R, , 2008. The limits and intensity of Plasmodium falciparum transmission: implications for malaria control and elimination worldwide. PLoS Med 5: e38.[Crossref] [Google Scholar]
  21. Hay SI, Guerra CA, Gething PW, Patil AP, Tatem AJ, Noor AM, Kabaria CW, Manh BH, Elyazar IRF, Brooker S, Smith DL, Moyeed RA, Snow RW, , 2009. A World Malaria Map: Plasmodium falciparum endemicity in 2007. PLoS Med 6: e1000048.[Crossref] [Google Scholar]
  22. Rosenberg R, Maheswary NP, , 1982. Forest malaria in Bangladesh I. Parasitology. Am J Trop Med Hyg 31: 175182. [Google Scholar]
  23. Rosenberg R, Maheswary NP, , 1982. Forest malaria in Bangladesh. II. Transmission by Anopheles dirus . Am J Trop Med Hyg 31: 183191. [Google Scholar]
  24. World Health Organization, 2009. Malaria Situation in Bangladesh. 2008 Malaria Situation in SEAR Countries. Geneva, Switzerland: World Health Organization. [Google Scholar]
  25. Haque U, Ahmed SM, Hossain S, Huda M, Hossain A, Alam MS, Mondal D, Khan WA, Khalequzzaman M, Haque R, , 2009. Malaria prevalence in endemic districts of Bangladesh. PLoS ONE 4: e6737.[Crossref] [Google Scholar]
  26. Noedl H, Faiz MA, Yunus EB, Rahman MR, Hossain MA, Samad R, Miller RS, Pang LW, Wongsrichanalai C, , 2003. Drug-resistant malaria in Bangladesh: an in vitro assessment. Am J Trop Med Hyg 68: 140142. [Google Scholar]
  27. Wongsrichanalai C, Sirichaisinthop J, Karwacki JJ, Congpuong K, Miller RS, Pang L, Thimasarn K, , 2001. Drug resistant malaria on the border of the Thai-Myanmar and Thai-Cambodian borders. Southeast Asian J Trop Med Public Health 32: 4149. [Google Scholar]
  28. Pull JH, Grab B, , 1974. A simple epidemiological model for evaluating the malaria inoculation rate and the risk of infection in infants. Bull World Health Organ 51: 507516. [Google Scholar]
  29. Smith DL, Guerra CA, Snow RW, Hay SI, , 2007. Standardizing estimates of the Plasmodium falciparum parasite rate. Malar J 6: 131.[Crossref] [Google Scholar]
  30. Molineaux L, Wernsdorfer WH, McGregor I, , 1988. The epidemiology of human malaria as an explanation of its distribution, including some implications for its control. , eds. Malaria: Principles and Practice of Malariology, Vol. 2. London, UK: Churchill Livingstone, 913998. [Google Scholar]
  31. Rosenberg R, , 1982. Forest malaria in Bangladesh. III. Breeding habitats of Anopheles dirus . Am J Trop Med Hyg 31: 192201. [Google Scholar]
  32. GlobCover Land Cover v2 2008 database, 2008. European Space Agency, European Space Agency GlobCover Project, led by MEDIAS-France. Available at: http://ionia1.esrin.esa.int/index.asp. [Google Scholar]
  33. Di Gregorio A, Jansen LJM, , 2000. Land Cover Classification System (LCCS). Rome, Italy: Food and Agriculture Organization (FAO). [Google Scholar]
  34. Scharlemann JPW, Benz D, Hay SI, Purse BV, Tatem AJ, Wint GRW, Rogers DJ, , 2008. Global data for ecology and epidemiology: a novel algorithm for temporal fourier processing MODIS data. PLoS ONE 3: e1408.[Crossref] [Google Scholar]
  35. Drakeley C, Carneiro I, Reyburn H, Malima R, Lusingu J, Cox J, Theander T, Nkya WMM, Lemnge MM, Riley EM, , 2005. Altitude-dependent and independent variations in Plasmodium falciparum prevalence in northeastern Tanzania. J Infect Dis 191: 15891598.[Crossref] [Google Scholar]
  36. Lindsay SW, Martens WJM, , 1998. Malaria in the African highlands: past, present and future. Bull World Health Organ 76: 3345. [Google Scholar]
  37. Hay SI, Omumbo J, Craig M, Snow RW, , 2000. Earth observation, geographic information systems and Plasmodium falciparum malaria in sub-Saharan Africa. Adv Parasitol 47: 173215.[Crossref] [Google Scholar]
  38. Thomson MC, Doblas-Reyes FJ, Mason SJ, Hagedorn R, Connor SJ, Phindela T, Morse AP, Palmer TN, , 2006. Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439: 576579.[Crossref] [Google Scholar]
  39. Thomson MC, Mason SJ, Phindela T, Connor SJ, , 2005. Use of rainfall and sea surface temperature monitoring for malaria early warning in Botswana. Am J Trop Med Hyg 73: 214221. [Google Scholar]
  40. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Garvis A, , 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25: 19651978.[Crossref] [Google Scholar]
  41. Shafiul Alam M, Khan MGM, Chaudhury N, Deloer S, Nazib F, Bangali AM, Haque R, , 2010. Prevalence of anopheline species and their Plasmodium infection status in epidemic-prone border areas of Bangladesh. Malar J 9: 15.[Crossref] [Google Scholar]
  42. Robert V, Macintyre K, Keating J, Trape JF, Duchemin JB, McWilson W, Beier JC, , 2003. Malaria transmission in urban sub-Saharan Africa. Am J Trop Med Hyg 68: 169176. [Google Scholar]
  43. Keiser J, Utzinger J, De Castro MC, Smith TA, Tanner M, Singer BH, , 2004. Urbanisation in sub-Saharan Africa and implications for malaria control. Am J Trop Med Hyg 71: 118127. [Google Scholar]
  44. Donnelly MJ, McCall PJ, Lengeler C, Bates I, D'Alessandro U, Barnish G, Konradsen F, Klinkenberg E, Townson H, Trape JF, Hastings IM, Mutero C, , 2005. Malaria and urbanization in sub-Saharan Africa. Malar J 4: 12.[Crossref] [Google Scholar]
  45. Omumbo JA, Guerra CA, Hay SI, Snow RW, , 2005. The influence of urbanisation on measures of Plasmodium falciparum infection prevalence in East Africa. Acta Trop 93: 1121.[Crossref] [Google Scholar]
  46. Hay S, Guerra C, Tatem A, Atkinson P, Snow R, , 2005. Urbanization, malaria transmission and disease burden in Africa. Nat Rev Microbiol 3: 8190.[Crossref] [Google Scholar]
  47. Uchida H, Nelson A, , 2008. Agglomeration Index: Toward a New Measure of Urban Concentration. Background Paper to World Development Report 2009 World Bank. Washington, DC: World Bank. [Google Scholar]
  48. Center for International Earth Science Information Network, Columbia University, International Food Policy Research Institute, The World Bank, Centro International de Agricultura Tropical, 2004. Global Rural-Urban Mapping Project (GRUMP): Urban Extents. Palisades, NY. [Google Scholar]
  49. Tatem A, Guerra C, Kabaria C, Noor A, Hay S, , 2008. Human population, urban settlement patterns and their impact on Plasmodium falciparum malaria endemicity. Malar J 7: 218.[Crossref] [Google Scholar]
  50. United Nations, 2006. United Nations Population Division: World Population Prospects, 2006 Revision. New York, NY: United Nations. [Google Scholar]
  51. Diggle PJ, Tawn JA, Moyeed R, , 1998. Model-based geostatistics. J Appl Stat 47: 299350. [Google Scholar]
  52. Pfeiffer DU, Robinson T, Stevenson M, Stevens K, Rogers DJ, Clements A, , 2008. Spatial Analysis in Epidemiology. Oxford, UK: Oxford University Press.[Crossref] [Google Scholar]
  53. Verdrager J, , 1995. Localised permanent epidemics: the genesis of chloroquine resistance in Plasmodium falciparum . Southeast Asian J Trop Med Public Health 26: 2328. [Google Scholar]
  54. Childs DZ, Cattadori IM, Suwonkerd W, Prajakwong S, Boots M, , 2006. Spatiotemporal patterns of malaria incidence in northern Thailand. Trans R Soc Trop Med Hyg 100: 623631.[Crossref] [Google Scholar]
  55. Srivastava A, Nagpal BN, Saxena R, Subbarao SK, , 2001. Predictive habitat modelling for forest malaria vector species An. dirus in India—a GIS-based approach. Curr Sci 80: 11291134. [Google Scholar]
  56. Oo TT, Storch V, Becker N, , 2003. Anopheles dirus and its role in malaria transmission in Myanmar. J Vector Ecol 28: 175183. [Google Scholar]

Data & Media loading...

  • Received : 10 Mar 2010
  • Accepted : 30 Jun 2010
  • Published online : 05 Oct 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error