Volume 83, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Plague, caused by the bacterium , is established across western North America, and yet little is known of what determines the broad-scale dimensions of its overall range. We tested whether its North American distribution represents a composite of individual host–plague associations (the “Host Niche Hypothesis”), or whether mammal hosts become infected only at sites overlapping ecological conditions appropriate for plague transmission and maintenance (the “Plague Niche Hypothesis”). We took advantage of a novel data set summarizing plague records in wild mammals newly digitized from paper-based records at the Centers for Disease Control and Prevention to develop range-wide tests of ecological niche similarity between mammal host niches and plague-infected host niches. Results indicate that plague infections occur under circumstances distinct from the broader ecological distribution of hosts, and that plague-infected niches are similar among hosts; hence, evidence coincides with the predictions of the Plague Niche Hypothesis, and contrasts with those of the Host Niche Hypothesis. The “plague niche” is likely driven by ecological requirements of vector flea species.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Levin SA, , 1992. The problem of pattern and scale in ecology: the Robert H. MacArthur Award Lecture. Ecology 73: 19431967.[Crossref] [Google Scholar]
  2. Wiens JA, , 1989. Spatial scaling in ecology. Funct Ecol 3: 385397.[Crossref] [Google Scholar]
  3. Collinge SK, Ray C, , 2006. Disease Ecology: Community Structure and Pathogen Dynamics. New York: Oxford University Press, 227.[Crossref] [Google Scholar]
  4. Ostfeld RS, Keesing F, Eviner VT, , 2008. Infectious Disease Ecology: Effects of Ecosystems on Disease and of Disease on Ecosystems. Princeton, NJ: Princeton University Press, 506. [Google Scholar]
  5. Brooker S, Clements AC, , 2009. Spatial heterogeneity of parasite co-infection: determinants and geostatistical prediction at regional scales. Int J Parasitol 39: 591597.[Crossref] [Google Scholar]
  6. Biggins DE, Kosoy MY, , 2001. Influences of introduced plague on North American mammals: implications from ecology of plague in Asia. J Mammal 82: 906916.[Crossref] [Google Scholar]
  7. Glass GE, Cheek JE, Patz JA, Shields TM, Doyle TJ, Thoroughman DA, Hunt DK, Enscore RE, Gage KL, Irland C, Peters CJ, Bryan R, , 2000. Using remotely sensed data to identify areas at risk for hantavirus pulmonary syndrome. Emerg Infect Dis 6: 238247.[Crossref] [Google Scholar]
  8. Eisen RJ, Enscore RE, Biggerstaff BJ, Reynolds PJ, Ettestad P, Brown T, Pape J, Tanda D, Levy CE, Engelthaler DM, Cheek J, Bueno R, Targhetta J, Montenieri JA, Gage KL, , 2007. Human plague in the southwestern United States, 1957–2004: spatial models of elevated risk of human exposure to Yersinia pestis . J Med Entomol 44: 530537.[Crossref] [Google Scholar]
  9. Gage KL, Kosoy MY, , 2005. Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol 50: 505528.[Crossref] [Google Scholar]
  10. Wimsatt J, Biggins DE, , 2009. A review of plague persistence with special emphasis on fleas. J Vector Dis 46: 8599. [Google Scholar]
  11. Eskey CR, Haas VH, , 1939. Plague in the western part of the United States: infection in rodents, experimental transmission by fleas, and inoculation tests for infection. Public Health Rep 54: 14671481.[Crossref] [Google Scholar]
  12. Barnes AM, Edwards MA, McDonnell U, , 1982. Surveillance and control of bubonic plague in the United States. , eds. Animal Disease in Relation to Animal Conservation. London, UK: Academic Press, 237270. [Google Scholar]
  13. Perry RD, Fetherston JD, , 1997. Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 10: 3566. [Google Scholar]
  14. Eisen RJ, Bearden SW, Wilder AP, Montenieri JA, Antolin MF, Gage KL, , 2006. Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proc Natl Acad Sci USA 103: 1538015385.[Crossref] [Google Scholar]
  15. Wilder AP, Eisen RJ, Bearden SW, Montenieri JA, Gage KL, Antolin MF, , 2008. Oropsylla hirsuta (Siphonaptera: Ceratophyllidae) can support plague epizootics in black-tailed prairie dogs (Cynomys ludovicianus) by early-phase transmission of Yersinia pestis . Vector-Borne Zoonot 8: 359367.[Crossref] [Google Scholar]
  16. Eisen RJ, Petersen JM, Higgins CL, Wong D, Levy CE, Mead PS, Schriefer ME, Griffith KS, Gage KL, Beard CB, , 2008. Persistence of Yersinia pestis in soil under natural conditions. Emerg Infect Dis 14: 941943.[Crossref] [Google Scholar]
  17. Ayyadurai S, Houhamdi L, Lepidi H, Nappez C, Raoult D, Drancourt M, , 2008. Long-term persistence of virulent Yersinia pestis in soil. Microbiology 154: 28652871.[Crossref] [Google Scholar]
  18. Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E, , 1999. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis . Proc Natl Acad Sci USA 96: 1404314048.[Crossref] [Google Scholar]
  19. Parkhill J, Wren BW, Thomson NR, Titball RW, Holden MT, Prentice MB, Sebaihia M, James KD, Churcher C, Mungall KL, Baker S, Basham D, Bentley SD, Brooks K, Cerdeno-Tarraga AM, Chillingworth T, Cronin A, Davies RM, Davis P, Dougan G, Feltwell T, Hamlin N, Holroyd S, Jagels K, Karlyshev AV, Leather S, Moule S, Oyston PC, Quail M, Rutherford K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG, , 2001. Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413: 523527.[Crossref] [Google Scholar]
  20. Barnes AM, Oldemeyer J, Biggins DE, Miller B, , 1993. A review of plague and its relevance to prairie dog populations and the black-footed ferret. , eds. Proceedings of the Symposium on the Management of Prairie Dog Complexes for the Reintroduction of the Black-footed Ferret. Washington, DC: USDI Biological Reports 13, 2837. [Google Scholar]
  21. Stapp P, Antolin MF, Ball M, , 2004. Patterns of extinction in prairie dog metapopulations: plague outbreaks follow El Niño events. Front Ecol Environ 2: 235240. [Google Scholar]
  22. Collinge SK, Johnson WC, Ray C, Matchett R, Grensten J, Cully JF, Gage KL, Kosoy MY, Loye JE, Martin AP, , 2005. Landscape structure and plague occurrence in black-tailed prairie dogs on grasslands of the western USA. Landscape Ecol 20: 941955.[Crossref] [Google Scholar]
  23. Webb CT, Brooks CP, Gage KL, Antolin MF, , 2006. Classic flea-borne transmission does not drive plague epizootics in prairie dogs. Proc Natl Acad Sci USA 103: 62366241.[Crossref] [Google Scholar]
  24. Ray C, Collinge SK, Collinge SK, Ray C, , 2006. Potential effects of a keystone species on the dynamics of sylvatic plague. , eds. Disease Ecology: Community Structure and Pathogen Dynamics. New York: Oxford University Press, 202216.[Crossref] [Google Scholar]
  25. Stapp P, Salkeld DJ, Eisen RJ, Pappert R, Young J, Carter LG, Gage KL, Tripp DW, Antolin MF, , 2008. Exposure of small rodents to plague during epizootics in black-tailed prairie dogs. J Wildl Dis 44: 724730.[Crossref] [Google Scholar]
  26. Tripp DW, Gage KL, Montenieri JA, Antolin MF, , 2009. Flea abundance on black-tailed prairie dogs (Cynomys ludovicianus) increases during plague epizootics. Vector-Borne Zoonot 9: 313321.[Crossref] [Google Scholar]
  27. Gage KL, Ostfeld RS, Olson JG, , 1995. Nonviral vector-borne zoonoses associated with mammals in the United States. J Mammal 76: 695715.[Crossref] [Google Scholar]
  28. Salkeld DJ, Stapp P, , 2008. No evidence of deer mouse involvement in plague (Yersinia pestis) epizootics in prairie dogs. Vector-Borne Zoonot 8: 331337.[Crossref] [Google Scholar]
  29. Thomas R, Barnes A, Quan T, Beard M, Carter L, Hopla C, , 1988. Susceptibility to Yersinia pestis in the northern grasshopper mouse (Onychomys leucogaster). J Wildl Dis 24: 327333.[Crossref] [Google Scholar]
  30. Stapp P, , 2007. Rodent communities in active and inactive colonies of black-tailed prairie dogs in shortgrass steppe. J Mammal 88: 241249.[Crossref] [Google Scholar]
  31. Nakazawa Y, Williams R, Peterson AT, Mead P, Staples E, Gage KL, , 2007. Climate change effects on plague and tularemia in the United States. Vector-Borne Zoonot 7: 529540.[Crossref] [Google Scholar]
  32. Neerinckx S, Peterson A, Gulinck H, Deckers J, Leirs H, , 2008. Geographic distribution and ecological niche of plague in sub-Saharan Africa. Int J Health Geogr 7: 54.[Crossref] [Google Scholar]
  33. Chu MC, , 2000. Laboratory Manual of Plague Diagnostic Test. Atlanta, GA: Centers for Disease Control and Prevention. [Google Scholar]
  34. Wieczorek J, Guo Q, Hijmans R, , 2004. The point-radius method for georeferencing locality descriptions and calculating associated uncertainty. Int J Geogr Inf Sci 18: 745767.[Crossref] [Google Scholar]
  35. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A, , 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25: 19651978.[Crossref] [Google Scholar]
  36. Jiménez-Valverde A, Nakazawa Y, Lira-Noriega A, Peterson AT, , 2009. Environmetnal correlation structure and ecological niche model projections. Biodiv Infor 6: 2835. [Google Scholar]
  37. Phillips SJ, Anderson RP, Schapire RE, , 2006. Maximum entropy modeling of species geographic distributions. Ecol Modell 190: 231259.[Crossref] [Google Scholar]
  38. Phillips SJ, Dudík M, , 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 21: 161175.[Crossref] [Google Scholar]
  39. Peterson A, Papes M, Eaton M, , 2007. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30: 550560.[Crossref] [Google Scholar]
  40. Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT, , 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34: 102117.[Crossref] [Google Scholar]
  41. Warren DL, Glor RE, Turelli M, , 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62: 28682883.[Crossref] [Google Scholar]
  42. Peterson AT, , Ecological niche conservatism: a time-structured review of evidence. J Biogeogr (In press). [Google Scholar]
  43. Soberón J, Peterson AT, , 2005. Interpretation of models of fundamental ecological niches and species' distributional areas. Biodiv Infor 2: 110. [Google Scholar]
  44. Boone A, Kraft JP, Stapp P, , 2009. Scavenging by mamalian carnivores on prairie dog colonies: implications for the spread of plague. Vector-Borne Zoonot 9: 185189.[Crossref] [Google Scholar]
  45. Brown JH, Valone TJ, Curtin CG, , 1997. Reorganization of an arid ecosystem in response to recent climate change. Proc Natl Acad Sci USA 94: 97299733.[Crossref] [Google Scholar]
  46. Brown JH, Ernest SK, , 2002. Rain and rodents: complex dynamics of desert consumers. Bioscience 52: 979987.[Crossref] [Google Scholar]
  47. Collinge SK, Johnson WC, Ray C, Matchett R, Grensten J, Cully JF, Gage KL, Kosoy MY, Loye JE, Martin AP, , 2005. Testing the generality of a trophic-cascade model for plague. EcoHealth 2: 102112.[Crossref] [Google Scholar]
  48. Cavanaugh DC, Marshall JD, Jr, 1972. The influence of climate on the seasonal prevalence of plauge in the republic of Vietnam. J Wildl Dis 8: 8594.[Crossref] [Google Scholar]
  49. Parmenter RR, Yadav EP, Parmenter CA, Ettestad P, Gage KL, , 1999. Incidence of plague associated with increased winter-spring precipitation in New Mexico. Am J Trop Med Hyg 61: 814821. [Google Scholar]
  50. Enscore R, Biggerstaff B, Brown T, Fulgham R, Reynolds P, Engelthaler D, Levy C, Parmenter R, Montenieri J, Cheek J, Grinnell R, Ettestad P, Gage K, , 2002. Modeling relationships between climate and the frequency of human plague cases in the southwestern United States, 1960–1997. Am J Trop Med Hyg 66: 186196. [Google Scholar]
  51. Boisier P, Rahalison L, Rasolomaharo M, Ratsitorahina M, Mahafaly M, Razafimahefa M, Duplantier J-M, Ratsifasoamanana L, Chanteau S, , 2002. Epidemiologic features of four successive annual outbreaks of bubonic plague in Mahajanga, Madagascar. Emerg Infect Dis 8: 311.[Crossref] [Google Scholar]
  52. Holt A, Salkeld D, Fritz C, Tucker J, Gong P, , 2009. Spatial analysis of plague in California: niche modeling predictions of the current distribution and potential response to climate change. Int J Health Geogr 8: 38.[Crossref] [Google Scholar]
  53. Krasnov BR, Shenbrot GI, Mouillot D, Khokhlova IS, Poulin R, , 2006. Ecological characteristics of flea species relate to their suitability as plague vectors. Oecologia 149: 474481.[Crossref] [Google Scholar]
  54. Adjemian JC, Girvetz EH, Beckett L, Foley JE, , 2006. Analysis of Genetic Algorithm for Rule-Set Production (GARP) modeling approach for predicting distributions of fleas implicated as vectors of plague, Yersinia pestis, in California. J Med Entomol 43: 93103. [Google Scholar]

Data & Media loading...

Supplementary figure and table

  • Received : 21 Jan 2010
  • Accepted : 27 May 2010
  • Published online : 05 Oct 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error