1921
Volume 83, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Vector competence, the probability that a vector will transmit a pathogen after feeding on an infected host, is known to vary among vector species, populations, days since feeding, and temperature during the extrinsic incubation period. However, the extent of spatio-temporal variability and consistency in vector competence of populations is not known. We examined vector competence of Linnaeus and Theobald mosquitoes for West Nile virus collected over 3 years from 17 sites to measure spatial and temporal scales of variation in vector competence. We found extreme variation with 0–52% of mosquitoes transmitting West Nile virus at a single site between different sampling periods, and similar variation across populations. However, we also found that within a smaller geographic range, vector competence varied somewhat synchronously, suggesting that environmental and population genetic factors might influence vector competence. These results highlight the spatio-temporal variability in vector competence and the role of local processes.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.2010.10-0005
2010-09-01
2017-11-18
Loading full text...

Full text loading...

/deliver/fulltext/14761645/83/3/607.html?itemId=/content/journals/10.4269/ajtmh.2010.10-0005&mimeType=html&fmt=ahah

References

  1. Hardy JL, Houk EJ, Kramer LD, Reeves WC, , 1983. Intrinsic factors affecting vector competence of mosquitos for arboviruses. Annu Rev Entomol 28: 229262.[Crossref]
  2. Garrett-Jones C, , 1964. Prognosis for interruption of malaria transmission through assessment of mosquitos vectorial capacity. Nature 204: 1173.[Crossref]
  3. MacDonald G, , 1957. The Epidemiology and Control of Malaria. London: Oxford University Press.
  4. Anderson RM, May RM, , 1991. Infectious Diseases of Humans: Dynamics and Control. London: Oxford University Press.
  5. Chamberlain R, Sudia WD, , 1961. Mechanism of transmission of viruses by mosquitoes. Annu Rev Entomol 6: 371390.[Crossref]
  6. Kramer LD, Hardy JL, Presser SB, Houk EJ, , 1981. Dissemination barriers for western equine encephalomyelitis virus in Culex tarsalis infected after ingestion of low viral doses. Am J Trop Med Hyg 30: 190197.
  7. Grimstad PR, Paulson SL, Craig GB, , 1985. Vector competence of Aedes hendersoni (Diptera, Culicidae) for La Crosse virus and evidence of a salivary gland escape barrier. J Med Entomol 22: 447453.[Crossref]
  8. Paulson SL, Grimstad PR, Craig GB, , 1989. Midgut and salivary gland barriers to Lacrosse virus dissemination in mosquitoes of the Aedes triseriatus group. Med Vet Entomol 3: 113123.[Crossref]
  9. Hardy JL, Monath TP, , 1988. Susceptibility and resistance of vector mosquitoes. , ed. The Arboviruses: Epidemiology and Ecology. Boca Raton, FL: CRC Press, 87126.
  10. Turell MJ, Dohm DJ, Sardelis MR, Oguinn ML, Andreadis TG, Blow JA, , 2005. An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol 42: 5762.[Crossref]
  11. Kilpatrick AM, LaDeau SL, Marra PP, , 2007. Ecology of West Nile virus transmission and its impact on birds in the western hemisphere. Auk 124: 11211136.[Crossref]
  12. Komar N, Clark GG, , 2006. West Nile virus activity in Latin America and the Caribbean. Revista Panam Salud Publica 19: 112117.[Crossref]
  13. Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M, , 2003. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9: 311322.[Crossref]
  14. Reisen WK, Fang Y, Martinez VM, , 2005. Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission. J Med Entomol 42: 367375.[Crossref]
  15. Savage HM, Anderson M, Gordon E, McMillen L, Colton L, Charnetzky D, Delorey M, Aspen S, Burkhalter K, Biggerstaff BJ, Godsey M, , 2006. Oviposition activity patterns and West Nile virus infection rates for members of the Culex pipiens complex at different habitat types within the hybrid zone, Shelby County, TN, 2002 (Diptera: Culicidae). J Med Entomol 43: 12271238.[Crossref]
  16. Gomez A, Kilpatrick AM, Kramer LD, Dupuis AP, Jones MJ, Goetz SJ, Marra PP, Daszak P, Aguirre AA, , 2008. Land use and West Nile virus seroprevalence in wild mammals. Emerg Infect Dis 14: 962965.[Crossref]
  17. Gibbs SE, Wimberly MC, Madden M, Masour J, Yabsley MJ, Stallknecht DE, , 2006. Factors affecting the geographic distribution of West Nile Virus in Georgia, USA: 2002–2004. Vector Borne Zoonotic Dis 6: 7382.[Crossref]
  18. Andreadis TG, Anderson JF, Vossbrinck CR, Main AJ, , 2004. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999–2003. Vector Borne Zoonotic Dis 4: 360378.[Crossref]
  19. Hamer GL, Kitron UD, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, Walker ED, , 2008. Culex pipiens (Diptera: Culicidae): a bridge vector of West Nile virus to humans. J Med Entomol 45: 125128.[Crossref]
  20. Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD, , 2006. Host heterogeneity dominates West Nile virus transmission. Proc Biol Sci 273: 23272333.[Crossref]
  21. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, , 2006. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4: 606610.[Crossref]
  22. Kent R, Juliusson L, Weissmann M, Evans S, Komar N, , 2009. Seasonal blood feeding behavior of Culex tarsalis (Diptera: Culicidae) in Weld County, Colorado, 2007. J Med Entomol 46: 380390.[Crossref]
  23. Kilpatrick AM, Kramer LD, Campbell S, Alleyne EO, Dobson AP, Daszak P, , 2005. West Nile virus risk assessment and the bridge vector paradigm. Emerg Infect Dis 11: 425429.[Crossref]
  24. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, Fonseca DM, , 2007. Genetic influences on mosquito feeding behavior and the emergence of zoonotic pathogens. Am J Trop Med Hyg 77: 667671.
  25. Goddard LB, Roth AE, Reisen WK, Scott TW, , 2002. Vector competence of California mosquitoes for West Nile virus. Emerg Infect Dis 8: 13851391.[Crossref]
  26. Turell MJ, O'Guinn ML, Dohm DJ, Jones JW, , 2001. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol 38: 130134.[Crossref]
  27. Turell MJ, O'Guinn M, Oliver J, , 2000. Potential for New York mosquitoes to transmit West Nile Virus. Am J Trop Med Hyg 62: 413414.
  28. Sardelis MR, Turell MJ, Dohm DJ, O'Guinn ML, , 2001. Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus. Emerg Infect Dis 7: 10181022.[Crossref]
  29. Ebel GD, Rochlin I, Longacker J, Kramer LD, , 2005. Culex restuans (Diptera: Culicidae) relative abundance and vector competence for West Nile virus. J Med Entomol 42: 838843.[Crossref]
  30. Moudy RM, Meola MA, Morin LL, Ebel GD, Kramer LD, , 2007. A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. Am J Trop Med Hyg 77: 365370.
  31. Kilpatrick AM, Meola MA, Moudy RM, Kramer LD, , 2008. Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathog 4: e1000092.[Crossref]
  32. Ebel GD, Carricaburu J, Young D, Bernard KA, Kramer LD, , 2004. Genetic and phenotypic variation of West Nile virus in New York, 2000–2003. Am J Trop Med Hyg 71: 493500.
  33. Dohm DJ, O'Guinn ML, Turell MJ, , 2002. Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol 39: 221225.[Crossref]
  34. Reisen WK, Barker CM, Fang Y, Martinez VM, , 2008. Does variation in Culex (Diptera: Culicidae) vector competence enable outbreaks of West Nile virus in California? J Med Entomol 45: 11261138.[Crossref]
  35. Sardelis M, Turell M, O'Guinn M, Andre R, Roberts D, , 2002. Vector competence of three North American strains of Aedes albopictus for West Nile virus. J Am Mosq Control Assoc 18: 284289.
  36. Vaidyanathan R, Scott TW, , 2007. Geographic variation in vector competence for West Nile virus in the Culex pipiens (Diptera: Culicidae) complex in California. Vector Borne Zoonotic Dis 7: 193198.[Crossref]
  37. Hayes CG, Baker RH, Baqar S, Ahmed T, , 1984. Genetic variation for West Nile virus susceptibility in Culex tritaeniorhynchus . Am J Trop Med Hyg 33: 715724.
  38. Vaidyanathan R, Scott TW, , 2006. Seasonal variation in susceptibility to West Nile virus infection in Culex pipiens pipiens (L.) (Diptera: Culicidae) from San Joaquin County, California. J Vector Ecol 31: 423425.[Crossref]
  39. Jia YQ, Moudy RM, Dupuis AP, Ngo KA, Maffei JG, Jerzak GVS, Franke MA, Kauffman EB, Kramer LD, , 2007. Characterization of a small plaque variant of West Nile virus isolated in New York in 2000. Virology 367: 339347.[Crossref]
  40. Aitken TH, , 1977. An in vitro feeding technique for artificially demonstrating virus transmission by mosquitoes. Mosq News 37: 130133.
  41. Payne AF, Binduga-Gajewska I, Kauffman EB, Kramer LD, , 2006. Quantitation of flaviviruses by fluorescent focus assay. J Virol Methods 134: 183189.[Crossref]
  42. Shi PY, Kauffman EB, Ren P, Felton A, Tai JH, Dupuis AP, Jones SA, Ngo KA, Nicholas DC, Maffei J, Ebel GD, Bernard KA, Kramer LD, , 2001. High-throughput detection of West Nile virus RNA. J Clin Microbiol 39: 12641271.[Crossref]
  43. Kauffman E, Jones S, Dupuis A II, Ngo K, Bernard K, Kramer LD, , 2003. Virus detection protocols for West Nile virus in vertebrate and mosquito specimens. J Clin Microbiol 41: 36613667.[Crossref]
  44. Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, Mogi M, Fleischer RC, Wilkerson RC, , 2004. Emerging vectors in the Culex pipiens complex. Science 303: 15351538.[Crossref]
  45. Smith JL, Keyghobadi N, Matrone MA, Escher R, Fonseca DM, , 2005. Cross-species comparison of microsatellite loci in the Culex pipiens complex and beyond. Mol Ecol Notes 5: 697700.[Crossref]
  46. Fonseca DM, Atkinson CT, Fleischer RC, , 1998. Microsatellite primers for Culex pipiens quinquefasciatus, the vector of avian malaria in Hawaii. Mol Ecol 7: 16171619.
  47. Keyghobadi N, Matrone MA, Ebel GD, Kramer LD, Fonseca DM, , 2004. Microsatellite loci from the northern house mosquito (Culex pipiens), a principal vector of West Nile virus in North America. Mol Ecol Notes 4: 2022.[Crossref]
  48. Smith JL, Fonseca DM, , 2004. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am J Trop Med Hyg 70: 339345.
  49. Hudson RR, Slatkin M, Maddison WP, , 1992. Estimation of levels of gene flow from DNA-sequence data. Genetics 132: 583589.
  50. Pritchard JK, Stephens M, Donnelly P, , 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945959.
  51. Reisen WK, Hardy JL, Presser SB, Chiles RE, , 1996. Seasonal variation in the vector competence of Culex tarsalis (Diptera: Culicidae) from the Coachella valley of California for western equine encephalomyelitis and St. Louis encephalitis viruses. J Med Entomol 33: 433437.[Crossref]
  52. Hardy JL, Meyer RP, Presser SB, Milby MM, , 1990. Temporal variations in the susceptibility of a semi-isolated population of Culex tarsalis to peroral infection with western equine encephalomyelitis and St. Louis encephalitis viruses. Am J Trop Med Hyg 42: 500511.
  53. Huang SM, Hamer GL, Molaei G, Walker ED, Goldberg TL, Kitron UD, Andreadis TG, , 2009. Genetic variation associated with mammalian feeding in Culex pipiens from a West Nile virus epidemic region in Chicago, Illinois. Vector Borne Zoonotic Dis 9: 637642.[Crossref]
  54. Styer LM, Meola MA, Kramer LD, , 2007. West Nile virus infection decreases fecundity of Culex tarsalis females. J Med Entomol 44: 10741085.[Crossref]
  55. Kramer L, Ebel G, , 2003. Dynamics of flavivirus infection in mosquitoes. Adv Virus Res 60: 187232.[Crossref]
  56. Pascual M, Ahumada JA, Chaves LF, Rodo X, Bouma M, , 2006. Malaria resurgence in the East African highlands: temperature trends revisited. Proc Natl Acad Sci USA 103: 58295834.[Crossref]
  57. Reisen WK, Reeves WC, Hardy J, Milby MM, , 1991. Effects of climatological change on the population dynamics and vector competence of mosquito vectors in California. Proceedings of the California Mosquito and Vector Control Association 59: 1420.
  58. Rogers DJ, Randolph SE, , 2006. Climate change and vector-borne diseases. Adv Parasitol 62: 345381.[Crossref]
  59. Kramer LD, Hardy JL, Presser SB, , 1983. Effect of temperature of extrinsic incubation on the vector competence of Culex tarsalis for western equine encephalomyelitis virus. Am J Trop Med Hyg 32: 11301139.
  60. Delatte H, Gimonneau G, Triboire A, Fontenille D, , 2009. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of Chikunguna and dengue in the Indian Ocean. J Med Entomol 46: 3341.[Crossref]
  61. Rueda LM, Patel KJ, Axtell RC, Stinner RE, , 1990. Temperature dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera, Culicidae). J Med Entomol 27: 892898.[Crossref]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2010.10-0005
Loading
/content/journals/10.4269/ajtmh.2010.10-0005
Loading

Data & Media loading...

  • Received : 03 Jan 2010
  • Accepted : 15 May 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error