1921
Volume 83, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Vector competence, the probability that a vector will transmit a pathogen after feeding on an infected host, is known to vary among vector species, populations, days since feeding, and temperature during the extrinsic incubation period. However, the extent of spatio-temporal variability and consistency in vector competence of populations is not known. We examined vector competence of Linnaeus and Theobald mosquitoes for West Nile virus collected over 3 years from 17 sites to measure spatial and temporal scales of variation in vector competence. We found extreme variation with 0–52% of mosquitoes transmitting West Nile virus at a single site between different sampling periods, and similar variation across populations. However, we also found that within a smaller geographic range, vector competence varied somewhat synchronously, suggesting that environmental and population genetic factors might influence vector competence. These results highlight the spatio-temporal variability in vector competence and the role of local processes.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2010.10-0005
2010-09-07
2020-04-10
Loading full text...

Full text loading...

/deliver/fulltext/14761645/83/3/607.html?itemId=/content/journals/10.4269/ajtmh.2010.10-0005&mimeType=html&fmt=ahah

References

  1. Hardy JL, Houk EJ, Kramer LD, Reeves WC, 1983. Intrinsic factors affecting vector competence of mosquitos for arboviruses. Annu Rev Entomol 28: 229262.[Crossref]
    [Google Scholar]
  2. Garrett-Jones C, 1964. Prognosis for interruption of malaria transmission through assessment of mosquitos vectorial capacity. Nature 204: 1173.[Crossref]
    [Google Scholar]
  3. MacDonald G, 1957. The Epidemiology and Control of Malaria. London: Oxford University Press.
    [Google Scholar]
  4. Anderson RM, May RM, 1991. Infectious Diseases of Humans: Dynamics and Control. London: Oxford University Press.
    [Google Scholar]
  5. Chamberlain R, Sudia WD, 1961. Mechanism of transmission of viruses by mosquitoes. Annu Rev Entomol 6: 371390.[Crossref]
    [Google Scholar]
  6. Kramer LD, Hardy JL, Presser SB, Houk EJ, 1981. Dissemination barriers for western equine encephalomyelitis virus in Culex tarsalis infected after ingestion of low viral doses. Am J Trop Med Hyg 30: 190197.
    [Google Scholar]
  7. Grimstad PR, Paulson SL, Craig GB, 1985. Vector competence of Aedes hendersoni (Diptera, Culicidae) for La Crosse virus and evidence of a salivary gland escape barrier. J Med Entomol 22: 447453.[Crossref]
    [Google Scholar]
  8. Paulson SL, Grimstad PR, Craig GB, 1989. Midgut and salivary gland barriers to Lacrosse virus dissemination in mosquitoes of the Aedes triseriatus group. Med Vet Entomol 3: 113123.[Crossref]
    [Google Scholar]
  9. Hardy JL, 1988. Susceptibility and resistance of vector mosquitoes. Monath TP, ed. The Arboviruses: Epidemiology and Ecology. Boca Raton, FL: CRC Press, 87126.
    [Google Scholar]
  10. Turell MJ, Dohm DJ, Sardelis MR, Oguinn ML, Andreadis TG, Blow JA, 2005. An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol 42: 5762.[Crossref]
    [Google Scholar]
  11. Kilpatrick AM, LaDeau SL, Marra PP, 2007. Ecology of West Nile virus transmission and its impact on birds in the western hemisphere. Auk 124: 11211136.[Crossref]
    [Google Scholar]
  12. Komar N, Clark GG, 2006. West Nile virus activity in Latin America and the Caribbean. Revista Panam Salud Publica 19: 112117.[Crossref]
    [Google Scholar]
  13. Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M, 2003. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9: 311322.[Crossref]
    [Google Scholar]
  14. Reisen WK, Fang Y, Martinez VM, 2005. Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission. J Med Entomol 42: 367375.[Crossref]
    [Google Scholar]
  15. Savage HM, Anderson M, Gordon E, McMillen L, Colton L, Charnetzky D, Delorey M, Aspen S, Burkhalter K, Biggerstaff BJ, Godsey M, 2006. Oviposition activity patterns and West Nile virus infection rates for members of the Culex pipiens complex at different habitat types within the hybrid zone, Shelby County, TN, 2002 (Diptera: Culicidae). J Med Entomol 43: 12271238.[Crossref]
    [Google Scholar]
  16. Gomez A, Kilpatrick AM, Kramer LD, Dupuis AP, Jones MJ, Goetz SJ, Marra PP, Daszak P, Aguirre AA, 2008. Land use and West Nile virus seroprevalence in wild mammals. Emerg Infect Dis 14: 962965.[Crossref]
    [Google Scholar]
  17. Gibbs SE, Wimberly MC, Madden M, Masour J, Yabsley MJ, Stallknecht DE, 2006. Factors affecting the geographic distribution of West Nile Virus in Georgia, USA: 2002–2004. Vector Borne Zoonotic Dis 6: 7382.[Crossref]
    [Google Scholar]
  18. Andreadis TG, Anderson JF, Vossbrinck CR, Main AJ, 2004. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999–2003. Vector Borne Zoonotic Dis 4: 360378.[Crossref]
    [Google Scholar]
  19. Hamer GL, Kitron UD, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, Walker ED, 2008. Culex pipiens (Diptera: Culicidae): a bridge vector of West Nile virus to humans. J Med Entomol 45: 125128.[Crossref]
    [Google Scholar]
  20. Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD, 2006. Host heterogeneity dominates West Nile virus transmission. Proc Biol Sci 273: 23272333.[Crossref]
    [Google Scholar]
  21. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, 2006. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4: 606610.[Crossref]
    [Google Scholar]
  22. Kent R, Juliusson L, Weissmann M, Evans S, Komar N, 2009. Seasonal blood feeding behavior of Culex tarsalis (Diptera: Culicidae) in Weld County, Colorado, 2007. J Med Entomol 46: 380390.[Crossref]
    [Google Scholar]
  23. Kilpatrick AM, Kramer LD, Campbell S, Alleyne EO, Dobson AP, Daszak P, 2005. West Nile virus risk assessment and the bridge vector paradigm. Emerg Infect Dis 11: 425429.[Crossref]
    [Google Scholar]
  24. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, Fonseca DM, 2007. Genetic influences on mosquito feeding behavior and the emergence of zoonotic pathogens. Am J Trop Med Hyg 77: 667671.
    [Google Scholar]
  25. Goddard LB, Roth AE, Reisen WK, Scott TW, 2002. Vector competence of California mosquitoes for West Nile virus. Emerg Infect Dis 8: 13851391.[Crossref]
    [Google Scholar]
  26. Turell MJ, O'Guinn ML, Dohm DJ, Jones JW, 2001. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol 38: 130134.[Crossref]
    [Google Scholar]
  27. Turell MJ, O'Guinn M, Oliver J, 2000. Potential for New York mosquitoes to transmit West Nile Virus. Am J Trop Med Hyg 62: 413414.
    [Google Scholar]
  28. Sardelis MR, Turell MJ, Dohm DJ, O'Guinn ML, 2001. Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus. Emerg Infect Dis 7: 10181022.[Crossref]
    [Google Scholar]
  29. Ebel GD, Rochlin I, Longacker J, Kramer LD, 2005. Culex restuans (Diptera: Culicidae) relative abundance and vector competence for West Nile virus. J Med Entomol 42: 838843.[Crossref]
    [Google Scholar]
  30. Moudy RM, Meola MA, Morin LL, Ebel GD, Kramer LD, 2007. A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. Am J Trop Med Hyg 77: 365370.
    [Google Scholar]
  31. Kilpatrick AM, Meola MA, Moudy RM, Kramer LD, 2008. Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathog 4: e1000092.[Crossref]
    [Google Scholar]
  32. Ebel GD, Carricaburu J, Young D, Bernard KA, Kramer LD, 2004. Genetic and phenotypic variation of West Nile virus in New York, 2000–2003. Am J Trop Med Hyg 71: 493500.
    [Google Scholar]
  33. Dohm DJ, O'Guinn ML, Turell MJ, 2002. Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol 39: 221225.[Crossref]
    [Google Scholar]
  34. Reisen WK, Barker CM, Fang Y, Martinez VM, 2008. Does variation in Culex (Diptera: Culicidae) vector competence enable outbreaks of West Nile virus in California? J Med Entomol 45: 11261138.[Crossref]
    [Google Scholar]
  35. Sardelis M, Turell M, O'Guinn M, Andre R, Roberts D, 2002. Vector competence of three North American strains of Aedes albopictus for West Nile virus. J Am Mosq Control Assoc 18: 284289.
    [Google Scholar]
  36. Vaidyanathan R, Scott TW, 2007. Geographic variation in vector competence for West Nile virus in the Culex pipiens (Diptera: Culicidae) complex in California. Vector Borne Zoonotic Dis 7: 193198.[Crossref]
    [Google Scholar]
  37. Hayes CG, Baker RH, Baqar S, Ahmed T, 1984. Genetic variation for West Nile virus susceptibility in Culex tritaeniorhynchus . Am J Trop Med Hyg 33: 715724.
    [Google Scholar]
  38. Vaidyanathan R, Scott TW, 2006. Seasonal variation in susceptibility to West Nile virus infection in Culex pipiens pipiens (L.) (Diptera: Culicidae) from San Joaquin County, California. J Vector Ecol 31: 423425.[Crossref]
    [Google Scholar]
  39. Jia YQ, Moudy RM, Dupuis AP, Ngo KA, Maffei JG, Jerzak GVS, Franke MA, Kauffman EB, Kramer LD, 2007. Characterization of a small plaque variant of West Nile virus isolated in New York in 2000. Virology 367: 339347.[Crossref]
    [Google Scholar]
  40. Aitken TH, 1977. An in vitro feeding technique for artificially demonstrating virus transmission by mosquitoes. Mosq News 37: 130133.
    [Google Scholar]
  41. Payne AF, Binduga-Gajewska I, Kauffman EB, Kramer LD, 2006. Quantitation of flaviviruses by fluorescent focus assay. J Virol Methods 134: 183189.[Crossref]
    [Google Scholar]
  42. Shi PY, Kauffman EB, Ren P, Felton A, Tai JH, Dupuis AP, Jones SA, Ngo KA, Nicholas DC, Maffei J, Ebel GD, Bernard KA, Kramer LD, 2001. High-throughput detection of West Nile virus RNA. J Clin Microbiol 39: 12641271.[Crossref]
    [Google Scholar]
  43. Kauffman E, Jones S, Dupuis A II, Ngo K, Bernard K, Kramer LD, 2003. Virus detection protocols for West Nile virus in vertebrate and mosquito specimens. J Clin Microbiol 41: 36613667.[Crossref]
    [Google Scholar]
  44. Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, Mogi M, Fleischer RC, Wilkerson RC, 2004. Emerging vectors in the Culex pipiens complex. Science 303: 15351538.[Crossref]
    [Google Scholar]
  45. Smith JL, Keyghobadi N, Matrone MA, Escher R, Fonseca DM, 2005. Cross-species comparison of microsatellite loci in the Culex pipiens complex and beyond. Mol Ecol Notes 5: 697700.[Crossref]
    [Google Scholar]
  46. Fonseca DM, Atkinson CT, Fleischer RC, 1998. Microsatellite primers for Culex pipiens quinquefasciatus, the vector of avian malaria in Hawaii. Mol Ecol 7: 16171619.
    [Google Scholar]
  47. Keyghobadi N, Matrone MA, Ebel GD, Kramer LD, Fonseca DM, 2004. Microsatellite loci from the northern house mosquito (Culex pipiens), a principal vector of West Nile virus in North America. Mol Ecol Notes 4: 2022.[Crossref]
    [Google Scholar]
  48. Smith JL, Fonseca DM, 2004. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am J Trop Med Hyg 70: 339345.
    [Google Scholar]
  49. Hudson RR, Slatkin M, Maddison WP, 1992. Estimation of levels of gene flow from DNA-sequence data. Genetics 132: 583589.
    [Google Scholar]
  50. Pritchard JK, Stephens M, Donnelly P, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945959.
    [Google Scholar]
  51. Reisen WK, Hardy JL, Presser SB, Chiles RE, 1996. Seasonal variation in the vector competence of Culex tarsalis (Diptera: Culicidae) from the Coachella valley of California for western equine encephalomyelitis and St. Louis encephalitis viruses. J Med Entomol 33: 433437.[Crossref]
    [Google Scholar]
  52. Hardy JL, Meyer RP, Presser SB, Milby MM, 1990. Temporal variations in the susceptibility of a semi-isolated population of Culex tarsalis to peroral infection with western equine encephalomyelitis and St. Louis encephalitis viruses. Am J Trop Med Hyg 42: 500511.
    [Google Scholar]
  53. Huang SM, Hamer GL, Molaei G, Walker ED, Goldberg TL, Kitron UD, Andreadis TG, 2009. Genetic variation associated with mammalian feeding in Culex pipiens from a West Nile virus epidemic region in Chicago, Illinois. Vector Borne Zoonotic Dis 9: 637642.[Crossref]
    [Google Scholar]
  54. Styer LM, Meola MA, Kramer LD, 2007. West Nile virus infection decreases fecundity of Culex tarsalis females. J Med Entomol 44: 10741085.[Crossref]
    [Google Scholar]
  55. Kramer L, Ebel G, 2003. Dynamics of flavivirus infection in mosquitoes. Adv Virus Res 60: 187232.[Crossref]
    [Google Scholar]
  56. Pascual M, Ahumada JA, Chaves LF, Rodo X, Bouma M, 2006. Malaria resurgence in the East African highlands: temperature trends revisited. Proc Natl Acad Sci USA 103: 58295834.[Crossref]
    [Google Scholar]
  57. Reisen WK, Reeves WC, Hardy J, Milby MM, 1991. Effects of climatological change on the population dynamics and vector competence of mosquito vectors in California. Proceedings of the California Mosquito and Vector Control Association 59: 1420.
    [Google Scholar]
  58. Rogers DJ, Randolph SE, 2006. Climate change and vector-borne diseases. Adv Parasitol 62: 345381.[Crossref]
    [Google Scholar]
  59. Kramer LD, Hardy JL, Presser SB, 1983. Effect of temperature of extrinsic incubation on the vector competence of Culex tarsalis for western equine encephalomyelitis virus. Am J Trop Med Hyg 32: 11301139.
    [Google Scholar]
  60. Delatte H, Gimonneau G, Triboire A, Fontenille D, 2009. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of Chikunguna and dengue in the Indian Ocean. J Med Entomol 46: 3341.[Crossref]
    [Google Scholar]
  61. Rueda LM, Patel KJ, Axtell RC, Stinner RE, 1990. Temperature dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera, Culicidae). J Med Entomol 27: 892898.[Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2010.10-0005
Loading
/content/journals/10.4269/ajtmh.2010.10-0005
Loading

Data & Media loading...

  • Received : 03 Jan 2010
  • Accepted : 15 May 2010
  • Published online : 07 Sep 2010
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error