Volume 83, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Interactions between environmental and biological factors affect the vector competence of for West Nile virus. Three age cohorts from two colonies were fed blood containing a low- or high-virus dose, and each group was held at two different extrinsic incubation temperatures (EIT) for 13 days. The colonies differed in the way that they responded to the effects of the environment on vector competence. The effects of mosquito age on aspects of vector competence were dependent on the EIT and dose, and they changed depending on the colony. Complex interactions must be considered in laboratory studies of vector competence, because the extent of the genetic and environmental variation controlling vector competence in nature is largely unknown. Differences in the environmental (EIT and dose) and biological (mosquito age and colony) effects from previous studies of vector competence for St. Louis encephalitis virus are discussed.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Hardy JL, Houk EJ, Kramer LD, Reeves WC, , 1983. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol 28: 229262.[Crossref] [Google Scholar]
  2. Mellor PS, , 2000. Replication of arboviruses in insect vectors. J Comp Pathol 123: 231247.[Crossref] [Google Scholar]
  3. Sardelis MR, Turell MJ, Dohm DJ, O'Guinn ML, , 2001. Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus. Infect Dis 7: 10181022.[Crossref] [Google Scholar]
  4. Mahmood F, Chiles RE, Fang Y, Green EN, Reisen WK, , 2006. Effects of time after infection, mosquito genotype, and infectious viral dose on the dynamics of Culex tarsalis vector competence for western equine encephalomyelitis virus. J Am Mosq Control Assoc 22: 272281.[Crossref] [Google Scholar]
  5. Styer L, Carey J, Wang J, Scott T, , 2007. Mosquitoes do senesce: departure from the paradigm of constant mortality. Am J Trop Med Hyg 76: 111117. [Google Scholar]
  6. Richards SL, Lord CC, Pesko K, Tabachnick WJ, , 2009. Environmental and biological factors influence Culex pipiens quinquefasciatus Say (Diptera: Culicidae) vector competence for Saint Louis encephalitis virus. Am J Trop Med Hyg 81: 264272. [Google Scholar]
  7. Godsey MS, Blackmore MS, Panella NA, Burkhalter K, Gottfried K, Halsey LA, Rutledge CR, Langevin SA, Gates R, Lamonte KM, Lambert A, Lanciotti RS, Blackmore AGM, Loyless T, Stark L, Oliveri R, Conti L, Komar N, , 2005. West Nile virus epizootiology in the southeastern United States, 2001. Vector Borne Zoonotic Dis 5: 8289.[Crossref] [Google Scholar]
  8. Irby WS, Apperson CS, , 1988. Hosts of mosquitoes in the coastal plain of North Carolina. J Med Entomol 25: 8593.[Crossref] [Google Scholar]
  9. Niebylski ML, Meek CL, , 1992. Blood-feeding of Culex mosquitoes in an urban environment. J Am Mosq Control Assoc 8: 173177. [Google Scholar]
  10. Molaei G, Andreadis TG, Armstrong PM, Bueno R, Jr Dennett JA, Real SV, Sargent C, Bala A, Randle Y, Guzman H, Travassos da Rosa A, Wuithiranyagool T, Tesh RB, , 2007. Host feeding pattern of Culex quinquefasciatus (Diptera: Culicidae) and its role in transmission of West Nile virus in Harris County, Texas. Am J Trop Med Hyg 77: 7381. [Google Scholar]
  11. Goddard LB, Roth AE, Reisen WK, Scott TW, , 2002. Vector competence of California mosquitoes for West Nile virus. Infect Dis 8: 13851391.[Crossref] [Google Scholar]
  12. Reisen WK, Fang Y, Martinez VM, , 2005. Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission. J Med Entomol 42: 367375.[Crossref] [Google Scholar]
  13. Rutledge CR, Day JF, Lord CC, Stark LM, Tabachnick WJ, , 2003. West Nile infection rates in Culex nigripalpus (Diptera: Culicidae) do not reflect transmission rates in Florida. J Med Entomol 40: 253258.[Crossref] [Google Scholar]
  14. Lillibridge KM, Parsons R, Randle Y, Travassos Da Rosa A, Guzman H, Siirin M, Wuithiranyagool T, Hailey C, Higgs S, Bala A, Pascua R, Meyer T, Vanlandingham D, Tesh R, , 2004. The 2002 introduction of West Nile virus into Harris County, Texas, an area historically endemic for St. Louis encephalitis. Am J Trop Med Hyg 70: 676681. [Google Scholar]
  15. Bosio CF, Fulton RE, Salasek ML, Beaty BJ, Black WC, , 2000. Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti . Genetics 156: 687698. [Google Scholar]
  16. Tiawsirisup S, Platt KB, Evans RB, Rowley WA, , 2005. A comparison of West Nile virus transmission by Ochlerotatus trivittatus (COQ.), Culex pipens (L.), and Aedes albopictus (Skuse). Vector Borne Zoonotic Dis 5: 4047.[Crossref] [Google Scholar]
  17. Kramer LD, Hardy JL, Presser SB, Houk EJ, , 1981. Dissemination barriers for western equine encephalomyelitis virus in Culex tarsalis infected after ingestion of low viral doses. Am J Trop Med Hyg 30: 190197. [Google Scholar]
  18. Girard YA, Klinger KA, Higgs S, , 2004. West Nile virus dissemination and tissue tropisms in orally infected Culex pipiens quinquefasciatus . Vector Borne Zoonotic Dis 4: 109122.[Crossref] [Google Scholar]
  19. Lord CC, Rutledge CR, Tabachnick WJ, , 2006. Relationships between host viremia and vector susceptibility for arboviruses. J Med Entomol 43: 623630.[Crossref] [Google Scholar]
  20. Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM, Komar N, Panella NA, Allen BC, Volpe KE, Davis BS, Roehrig JT, , 2000. Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol 38: 40664071. [Google Scholar]
  21. Richards SL, Mores CN, Lord CC, Tabachnick WJ, , 2007. Impact of extrinsic incubation temperature and virus exposure on vector competence of Culex pipiens quinquefasciatus (Diptera: Culicidae) for WNV. Vector Borne Zoonotic Dis 7: 629636.[Crossref] [Google Scholar]
  22. Cohen J, , 1992. A power primer. Psychol Bull 111: 155159.[Crossref] [Google Scholar]
  23. Faul F, Erdfelder E, Lang AG, Buchner A, , 2007. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39: 175191.[Crossref] [Google Scholar]
  24. SAS, 2002. SAS/STAT User's Guide for Personal Computers, version 8.2. Cary, NC: SAS. [Google Scholar]
  25. Frederickson BL, Smith M, Katze MG, Shi P-Y, Gale M, , 2004. The host response to West Nile virus infection limits viral spread through the activation of the interferon regulatory factor 3 pathway. J Virol 78: 77377747.[Crossref] [Google Scholar]
  26. Smartt CT, Richards SL, Anderson SL, Erickson JS, , 2009. West Nile virus infection alters midgut gene expression in Culex pipiens quinquefasciatus . Am J Trop Med Hyg 81: 258263. [Google Scholar]
  27. Kramer LD, Hardy JL, Presser SB, , 1998. Characterization of modulation of western equine encephalomyelitis virus by Culex tarsalis (Diptera: Culicidae) maintained at 32°C following parenteral infection. J Med Entomol 35: 289295.[Crossref] [Google Scholar]
  28. Reisen WK, Fang Y, Martinez VM, , 2006. Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera: Culicidae). J Med Entomol 43: 309317.[Crossref] [Google Scholar]
  29. Brinton MA, , 1983. Analysis of extracellular West Nile virus particles produced by cell cultures from genetically resistant and susceptible mice indicated enhanced amplification of defective interfering particles by resistant cultures. J Vasc Interv Radiol 46: 860870. [Google Scholar]
  30. Tsai K-N, Tsang S-F, Huang C-H, Chang R-Y, , 2007. Defective interfering RNAs of Japanese encephalitis virus found in mosquito cells and correlation with persistent infection. Virus Res 124: 139150.[Crossref] [Google Scholar]
  31. Debnath NC, Tiernery R, Sil BK, Wills MR, Barrett ADT, , 1991. In vitro homotypic and heterotypic interference by defective interfering particles of West Nile virus. J Gen Virol 72: 27052711.[Crossref] [Google Scholar]
  32. Richardson J, Molina-Cruz A, Salazar MI, Black W, , 2006. Quantitative analysis of dengue-2 virus RNA during the extrinsic incubation period in individual Aedes aegypti . Am J Trop Med Hyg 74: 132141. [Google Scholar]

Data & Media loading...

  • Received : 21 Dec 2009
  • Accepted : 05 Apr 2010
  • Published online : 06 Jul 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error