Volume 82, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Pemphigus foliaceus is a life threatening skin disease that is associated with autoimmunity to desmoglein, a skin protein involved in the adhesion of keratinocytes. This disease is endemic in certain areas of South America, suggesting the mediation of environmental factors triggering autoimmunity. Among the possible environmental factors, exposure to bites of black flies, in particular has been suggested. In this work, we describe the sialotranscriptome of adult female flies. It reveals the complexity of the salivary potion of this insect, comprised by over 70 distinct genes within over 30 protein families, including several novel families, even when compared with the previously described sialotranscriptome of the autogenous black fly, The uncovering of this sialotranscriptome provides a platform for testing pemphigus patient sera against recombinant salivary proteins from and for the discovery of novel pharmacologically active compounds.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Culton DA, Qian Y, Li N, Rubenstein D, Aoki V, Filho GH, Rivitti EA, Diaz LA, , 2008. Advances in pemphigus and its endemic pemphigus foliaceus (Fogo Selvagem) phenotype: a paradigm of human autoimmunity. J Autoimmun 31: 311324.[Crossref] [Google Scholar]
  2. Qian Y, Clarke SH, Aoki V, Hans-Filho G, Rivitti EA, Diaz LA, , 2009. Antigen selection of anti-DSG1 autoantibodies during and before the onset of endemic pemphigus foliaceus. J Invest Dermatol 129: 28232834.[Crossref] [Google Scholar]
  3. Rock B, Labib RS, Diaz LA, , 1990. Monovalent Fab' immunoglobulin fragments from endemic pemphigus foliaceus autoantibodies reproduce the human disease in neonatal Balb/c mice. J Clin Invest 85: 296299.[Crossref] [Google Scholar]
  4. Hilario-Vargas J, Dasher DA, Li N, Aoki V, Hans-Filho G, dos Santos V, Qaqish BF, Rivitti EA, Diaz LA, , 2006. Prevalence of anti-desmoglein-3 antibodies in endemic regions of Fogo selvagem in Brazil. J Invest Dermatol 126: 20442048.[Crossref] [Google Scholar]
  5. Eaton DP, Diaz LA, Hans-Filho G, Santos VD, Aoki V, Friedman H, Rivitti EA, Sampaio SA, Gottlieb MS, Giudice GJ, Lopez A, Cupp EW, , 1998. Comparison of black fly species (Diptera: Simuliidae) on an Amerindian reservation with a high prevalence of fogo selvagem to neighboring disease-free sites in the State of Mato Grosso do Sul, Brazil. The Cooperative Group on Fogo Selvagem Research. J Med Entomol 35: 120131.[Crossref] [Google Scholar]
  6. Ribeiro JM, Francischetti IM, , 2003. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 48: 7388.[Crossref] [Google Scholar]
  7. Ribeiro JM, , 1995. Blood-feeding arthropods: live syringes or invertebrate pharmacologists? Infect Agents Dis 4: 143152. [Google Scholar]
  8. Ribeiro JMC, Arcà B, , 2009. From sialomes to the sialoverse: an insight into the salivary potion of blood feeding insects. Adv Insect Physiol 37: 59118.[Crossref] [Google Scholar]
  9. Calvo E, Pham VM, Marinotti O, Andersen JF, Ribeiro JM, , 2009. The salivary gland transcriptome of the neotropical malaria vector Anopheles darlingi reveals accelerated evolution of genes relevant to hematophagy. BMC Genomics 10: 57.[Crossref] [Google Scholar]
  10. Ribeiro JM, Arca B, Lombardo F, Calvo E, Phan VM, Chandra PK, Wikel SK, , 2007. An annotated catalogue of salivary gland transcripts in the adult female mosquito, Aedes aegypti . BMC Genomics 8: 6.[Crossref] [Google Scholar]
  11. Arca B, Lombardo F, Francischetti IM, Pham VM, Mestres-Simon M, Andersen JF, Ribeiro JM, , 2007. An insight into the sialome of the adult female mosquito Aedes albopictus . Insect Biochem Mol Biol 37: 107127.[Crossref] [Google Scholar]
  12. Arca B, Lombardo F, Valenzuela JG, Francischetti IM, Marinotti O, Coluzzi M, Ribeiro JM, , 2005. An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae . J Exp Biol 208: 39713986.[Crossref] [Google Scholar]
  13. Ribeiro JM, Charlab R, Pham VM, Garfield M, Valenzuela JG, , 2004. An insight into the salivary transcriptome and proteome of the adult female mosquito Culex pipiens quinquefasciatus . Insect Biochem Mol Biol 34: 543563.[Crossref] [Google Scholar]
  14. Valenzuela JG, Francischetti IM, Pham VM, Garfield MK, Ribeiro JM, , 2003. Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito. Insect Biochem Mol Biol 33: 717732.[Crossref] [Google Scholar]
  15. Andersen JF, Pham VM, Meng Z, Champagne DE, Ribeiro JM, , 2009. Insight into the sialome of the Black Fly, Simulium vittatum . J Proteome Res 8: 14741488.[Crossref] [Google Scholar]
  16. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, , 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 33893402.[Crossref] [Google Scholar]
  17. Huang X, Madan A, , 1999. CAP3: a DNA sequence assembly program. Genome Res 9: 868877.[Crossref] [Google Scholar]
  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG, , 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 48764882.[Crossref] [Google Scholar]
  19. Kumar S, Tamura K, Nei M, , 2004. MEGA3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5: 150163.[Crossref] [Google Scholar]
  20. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G, , 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 2529.[Crossref] [Google Scholar]
  21. Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer EL, , 2000. The Pfam protein families database. Nucleic Acids Res 28: 263266.[Crossref] [Google Scholar]
  22. Schultz J, Copley RR, Doerks T, Ponting CP, Bork P, , 2000. SMART: a web-based tool for the study of genetically mobile domains. Nucleic Acids Res 28: 231234.[Crossref] [Google Scholar]
  23. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA, , 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4: 41.[Crossref] [Google Scholar]
  24. Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH, , 2002. CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 30: 281283.[Crossref] [Google Scholar]
  25. Nielsen H, Engelbrecht J, Brunak S, von Heijne G, , 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10: 16.[Crossref] [Google Scholar]
  26. Julenius K, Molgaard A, Gupta R, Brunak S, , 2005. Prediction, conservation analysis, and structural characterization of mammalian mucin-type O-glycosylation sites. Glycobiology 15: 153164.[Crossref] [Google Scholar]
  27. Friedman R, Hughes AL, , 2005. Codon volatility as an indicator of positive selection: data from eukaryotic genome comparisons. Mol Biol Evol 22: 542546.[Crossref] [Google Scholar]
  28. Silva JC, Loreto EL, Clark JB, , 2004. Factors that affect the horizontal transfer of transposable elements. Curr Issues Mol Biol 6: 5771. [Google Scholar]
  29. Govan VA, Leat N, Allsopp M, Davison S, , 2000. Analysis of the complete genome sequence of acute bee paralysis virus shows that it belongs to the novel group of insect-infecting RNA viruses. Virology 277: 457463.[Crossref] [Google Scholar]
  30. Koonin EV, Wolf YI, Nagasaki K, Dolja VV, , 2008. The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups. Nat Rev Microbiol 6: 925939.[Crossref] [Google Scholar]
  31. Stanway G, Brown F, Christian P, Hovi T, Hyypiä T, King AMQ, Knowles NJ, Lemon SM, Minor PD, Pallansch MA, Palmenberg AC, Skern T, , 2005. Family Picornaviridae. Virus Taxonomy. Eighth Report of the International Committee on Taxonomy of Viruses. London: Elsevier/Academic Press, 757778. [Google Scholar]
  32. Tate J, Liljas L, Scotti P, Christian P, Lin T, Johnson JE, , 1999. The crystal structure of cricket paralysis virus: the first view of a new virus family. Nat Struct Biol 6: 765774.[Crossref] [Google Scholar]
  33. Francischetti IM, Valenzuela JG, Pham VM, Garfield MK, Ribeiro JM, , 2002. Toward a catalog for the transcripts and proteins (sialome) from the salivary gland of the malaria vector Anopheles gambiae . J Exp Biol 205: 24292451. [Google Scholar]
  34. Ribeiro JM, Andersen J, Silva-Neto MA, Pham VM, Garfield MK, Valenzuela JG, , 2004. Exploring the sialome of the blood-sucking bug Rhodnius prolixus . Insect Biochem Mol Biol 34: 6179.[Crossref] [Google Scholar]
  35. Galperin MY, Koonin EV, , 2004. “Conserved hypothetical” proteins: prioritization of targets for experimental study. Nucleic Acids Res 32: 54525463.[Crossref] [Google Scholar]
  36. Kanost MR, Jiang H, Yu XQ, , 2004. Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Rev 198: 97105.[Crossref] [Google Scholar]
  37. Soderhall K, Cerenius L, , 1998. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 10: 2328.[Crossref] [Google Scholar]
  38. Volfova V, Hostomska J, Cerny M, Votypka J, Volf P, , 2008. Hyaluronidase of bloodsucking insects and its enhancing effect on leishmania infection in mice. PLoS Negl Trop Dis 2: e294.[Crossref] [Google Scholar]
  39. Wilson AD, Heesom KJ, Mawby WJ, Mellor PS, Russell CL, , 2008. Identification of abundant proteins and potential allergens in Culicoides nubeculosus salivary glands. Vet Immunol Immunopathol 122: 94103.[Crossref] [Google Scholar]
  40. Ribeiro JM, Charlab R, Rowton ED, Cupp EW, , 2000. Simulium vittatum (Diptera: Simuliidae) and Lutzomyia longipalpis (Diptera: Psychodidae) salivary gland hyaluronidase activity. J Med Entomol 37: 743747.[Crossref] [Google Scholar]
  41. Wang X, Ribeiro JM, Broce AB, Wilkerson MJ, Kanost MR, , 2009. An insight into the transcriptome and proteome of the salivary gland of the stable fly, Stomoxys calcitrans . Insect Biochem Mol Biol 39: 607614.[Crossref] [Google Scholar]
  42. Calvo E, Ribeiro JM, , 2006. A novel secreted endonuclease from Culex quinquefasciatus salivary glands. J Exp Biol 209: 26512659.[Crossref] [Google Scholar]
  43. Valenzuela JG, Garfield M, Rowton ED, Pham VM, , 2004. Identification of the most abundant secreted proteins from the salivary glands of the sand fly Lutzomyia longipalpis, vector of Leishmania chagasi . J Exp Biol 207: 37173729.[Crossref] [Google Scholar]
  44. Ribeiro JM, , 1987. Role of arthropod saliva in blood feeding. Annu Rev Entomol 32: 463478.[Crossref] [Google Scholar]
  45. Sun D, McNicol A, James AA, Peng Z, , 2006. Expression of functional recombinant mosquito salivary apyrase: a potential therapeutic platelet aggregation inhibitor. Platelets 17: 178184.[Crossref] [Google Scholar]
  46. Champagne DE, Smartt CT, Ribeiro JM, James AA, , 1995. The salivary gland-specific apyrase of the mosquito Aedes aegypti is a member of the 5¢-nucleotidase family. Proc Natl Acad Sci USA 92: 694698.[Crossref] [Google Scholar]
  47. Faudry E, Santana JM, Ebel C, Vernet T, Teixeira AR, , 2006. Salivary apyrases of Triatoma infestans are assembled into homo-oligomers. Biochem J 396: 509515.[Crossref] [Google Scholar]
  48. Faudry E, Lozzi SP, Santana JM, D'Souza-Ault M, Kieffer S, Felix CR, Ricart CA, Sousa MV, Vernet T, Teixeira AR, , 2004. Triatoma infestans apyrases belong to the 5¢-nucleotidase family. J Biol Chem 279: 1960719613.[Crossref] [Google Scholar]
  49. Valenzuela JG, Belkaid Y, Rowton E, Ribeiro JM, , 2001. The salivary apyrase of the blood-sucking sand fly Phlebotomus papatasi belongs to the novel Cimex family of apyrases. J Exp Biol 204: 229237. [Google Scholar]
  50. Valenzuela JG, Charlab R, Galperin MY, Ribeiro JM, , 1998. Purification, cloning, and expression of an apyrase from the bed bug Cimex lectularius. A new type of nucleotide-binding enzyme. J Biol Chem 273: 3058330590.[Crossref] [Google Scholar]
  51. Andersen JF, Hinnebusch BJ, Lucas DA, Conrads TP, Veenstra TD, Pham VM, Ribeiro JM, , 2007. An insight into the sialome of the oriental rat flea, Xenopsylla cheopis (Rots). BMC Genomics 8: 102.[Crossref] [Google Scholar]
  52. Ogata S, Hayashi Y, Misumi Y, Ikehara Y, , 1990. Membrane-anchoring domain of rat liver 5¢-nucleotidase: identification of the COOH-terminal serine-523 covalently attached with a glycolipid. Biochemistry 29: 79237927.[Crossref] [Google Scholar]
  53. Misumi Y, Ogata S, Ohkubo K, Hirose S, Ikehara Y, , 1990. Primary structure of human placental 5¢-nucleotidase and identification of the glycolipid anchor in the mature form. Eur J Biochem 191: 563569.[Crossref] [Google Scholar]
  54. Cupp MS, Cupp EW, Ochoa AJ, Moulton JK, , 1995. Salivary apyrase in New World blackflies (Diptera: Simuliidae) and its relationship to onchocerciasis vector status. Med Vet Entomol 9: 325330.[Crossref] [Google Scholar]
  55. Baskova IP, Nikonov GI, , 1991. Destabilase, the novel epsilon-(gamma-Glu)-Lys isopeptidase with thrombolytic activity. Blood Coagul Fibrinolysis 2: 167172.[Crossref] [Google Scholar]
  56. Zavalova LL, Artamonova II, Berezhnoy SN, Tagaev AA, Baskova IP, Andersen J, Roepstorff P, Egorov Ts A, , 2003. Multiple forms of medicinal leech destabilase-lysozyme. Biochem Biophys Res Commun 306: 318323.[Crossref] [Google Scholar]
  57. Zavalova LL, Baskova IP, Lukyanov SA, Sass AV, Snezhkov EV, Akopov SB, Artamonova II, Archipova VS, Nesmeyanov VA, Kozlov DG, Benevolensky SV, Kiseleva VI, Poverenny AM, Sverdlov ED, , 2000. Destabilase from the medicinal leech is a representative of a novel family of lysozymes. Biochim Biophys Acta 1478: 6977.[Crossref] [Google Scholar]
  58. Vija H, Samel M, Siigur E, Aaspollu A, Tonismagi K, Trummal K, Subbi J, Siigur J, , 2009. VGD and MLD-motifs containing heterodimeric disintegrin viplebedin-2 from Vipera lebetina snake venom. Purification and cDNA cloning. Comp Biochem Physiol B Biochem Mol Biol 153: 253260.[Crossref] [Google Scholar]
  59. Calvete JJ, Moreno-Murciano MP, Theakston RD, Kisiel DG, Marcinkiewicz C, , 2003. Snake venom disintegrins: novel dimeric disintegrins and structural diversification by disulphide bond engineering. Biochem J 372: 725734.[Crossref] [Google Scholar]
  60. Ascenzi P, Bocedi A, Bolognesi M, Spallarossa A, Coletta M, De Cristofaro R, Menegatti E, , 2003. The bovine basic pancreatic trypsin inhibitor (Kunitz inhibitor): a milestone protein. Curr Protein Pept Sci 4: 231251.[Crossref] [Google Scholar]
  61. Salier JP, , 1990. Inter-alpha-trypsin inhibitor: emergence of a family within the Kunitz-type protease inhibitor superfamily. Trends Biochem Sci 15: 435439.[Crossref] [Google Scholar]
  62. Paesen GC, Siebold C, Dallas ML, Peers C, Harlos K, Nuttall PA, Nunn MA, Stuart DI, Esnouf RM, , 2009. An ion-channel modulator from the saliva of the brown ear tick has a highly modified Kunitz/BPTI structure. J Mol Biol 389: 734747.[Crossref] [Google Scholar]
  63. Castaneda O, Harvey AL, , 2009. Discovery and characterization of cnidarian peptide toxins that affect neuronal potassium ion channels. Toxicon 54: 11191124.[Crossref] [Google Scholar]
  64. Dy CY, Buczek P, Imperial JS, Bulaj G, Horvath MP, , 2006. Structure of conkunitzin-S1, a neurotoxin and Kunitz-fold disulfide variant from cone snail. Acta Crystallogr D Biol Crystallogr 62: 980990.[Crossref] [Google Scholar]
  65. Lucchesi KJ, Moczydlowski E, , 1991. On the interaction of bovine pancreatic trypsin inhibitor with maxi Ca(2+)-activated K+ channels. A model system for analysis of peptide-induced subconductance states. J Gen Physiol 97: 12951319.[Crossref] [Google Scholar]
  66. Mans BJ, Neitz AW, , 2004. Adaptation of ticks to a blood-feeding environment: evolution from a functional perspective. Insect Biochem Mol Biol 34: 117.[Crossref] [Google Scholar]
  67. Steen NA, Barker SC, Alewood PF, , 2006. Proteins in the saliva of the Ixodida (ticks): pharmacological features and biological significance. Toxicon 47: 120.[Crossref] [Google Scholar]
  68. Francischetti IM, Valenzuela JG, Andersen JF, Mather TN, Ribeiro JM, , 2002. Ixolaris, a novel recombinant tissue factor pathway inhibitor (TFPI) from the salivary gland of the tick, Ixodes scapularis: identification of factor X and factor Xa as scaffolds for the inhibition of factor VIIa/tissue factor complex. Blood 99: 36023612.[Crossref] [Google Scholar]
  69. Stark KR, James AA, , 1998. Isolation and characterization of the gene encoding a novel factor Xa-directed anticoagulant from the yellow fever mosquito, Aedes aegypti . J Biol Chem 273: 2080220809.[Crossref] [Google Scholar]
  70. Valenzuela JG, Francischetti IM, Ribeiro JM, , 1999. Purification, cloning, and synthesis of a novel salivary anti-thrombin from the mosquito Anopheles albimanus . Biochemistry 38: 1120911215.[Crossref] [Google Scholar]
  71. Francischetti IM, Valenzuela JG, Ribeiro JM, , 1999. Anophelin: kinetics and mechanism of thrombin inhibition. Biochemistry 38: 1667816685.[Crossref] [Google Scholar]
  72. Campbell CL, Vandyke KA, Letchworth GJ, Drolet BS, Hanekamp T, Wilson WC, , 2005. Midgut and salivary gland transcriptomes of the arbovirus vector Culicoides sonorensis (Diptera: Ceratopogonidae). Insect Mol Biol 14: 121136.[Crossref] [Google Scholar]
  73. Andersen JF, Gudderra NP, Francischetti IM, Valenzuela JG, Ribeiro JM, , 2004. Recognition of anionic phospholipid membranes by an antihemostatic protein from a blood-feeding insect. Biochemistry 43: 69876994.[Crossref] [Google Scholar]
  74. Buser CA, Kim J, McLaughlin S, Peitzsch RM, , 1995. Does the binding of clusters of basic residues to acidic lipids induce domain formation in membranes? Mol Membr Biol 12: 6975.[Crossref] [Google Scholar]
  75. Kirszberg C, Lima LG, Da Silva de Oliveira A, Pickering W, Gray E, Barrowcliffe TW, Rumjanek VM, Monteiro RQ, , 2009. Simultaneous tissue factor expression and phosphatidylserine exposure account for the highly procoagulant pattern of melanoma cell lines. Melanoma Res 19: 301308.[Crossref] [Google Scholar]
  76. Megraw T, Kaufman TC, Kovalick GE, , 1998. Sequence and expression of Drosophila Antigen 5-related 2, a new member of the CAP gene family. Gene 222: 297304.[Crossref] [Google Scholar]
  77. Milne TJ, Abbenante G, Tyndall JD, Halliday J, Lewis RJ, , 2003. Isolation and characterization of a cone snail protease with homology to CRISP proteins of the pathogenesis-related protein superfamily. J Biol Chem 278: 3110531110.[Crossref] [Google Scholar]
  78. Yamazaki Y, Hyodo F, Morita T, , 2003. Wide distribution of cysteine-rich secretory proteins in snake venoms: isolation and cloning of novel snake venom cysteine-rich secretory proteins. Arch Biochem Biophys 412: 133141.[Crossref] [Google Scholar]
  79. Yamazaki Y, Morita T, , 2004. Structure and function of snake venom cysteine-rich secretory proteins. Toxicon 44: 227231.[Crossref] [Google Scholar]
  80. Mochca-Morales J, Martin BM, Possani LD, , 1990. Isolation and characterization of helothermine, a novel toxin from Heloderma horridum horridum (Mexican beaded lizard) venom. Toxicon 28: 299309.[Crossref] [Google Scholar]
  81. Xu X, Yang H, Ma D, Wu J, Wang Y, Song Y, Wang X, Lu Y, Yang J, Lai R, , 2008. Toward an understanding of the molecular mechanism for successful blood feeding by coupling proteomics analysis with pharmacological testing of horsefly salivary glands. Mol Cell Proteomics 7: 582590.[Crossref] [Google Scholar]
  82. Scarborough RM, Naughton MA, Teng W, Rose JW, Phillips DR, Nannizzi L, Arfsten A, Campbell AM, Charo IF, , 1993. Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein IIb-IIIa. J Biol Chem 268: 10661073. [Google Scholar]
  83. Ameri M, Wang X, Wilkerson MJ, Kanost MR, Broce AB, , 2008. An immunoglobulin binding protein (antigen 5) of the stable fly (Diptera: Muscidae) salivary gland stimulates bovine immune responses. J Med Entomol 45: 94101.[Crossref] [Google Scholar]
  84. Valenzuela JG, Charlab R, Gonzalez EC, de Miranda-Santos IK, Marinotti O, Francischetti IM, Ribeiro JM, , 2002. The D7 family of salivary proteins in blood sucking diptera. Insect Mol Biol 11: 149155.[Crossref] [Google Scholar]
  85. Hekmat-Scafe DS, Dorit RL, Carlson JR, , 2000. Molecular evolution of odorant-binding protein genes OS-E and OS-F in Drosophila . Genetics 155: 117127. [Google Scholar]
  86. Mans BJ, Calvo E, Ribeiro JM, Andersen JF, , 2007. The crystal structure of D7r4, a salivary biogenic amine-binding protein from the malaria mosquito Anopheles gambiae . J Biol Chem 282: 3662636633.[Crossref] [Google Scholar]
  87. Valenzuela JG, Charlab R, Gonzalez EC, Miranda-Santos IKF, Marinotti O, Francischetti IM, Ribeiro JMC, , 2002. The D7 family of salivary proteins in blood sucking Diptera. Insect Mol Biol 11: 149155.[Crossref] [Google Scholar]
  88. Calvo E, Mans BJ, Andersen JF, Ribeiro JM, , 2006. Function and evolution of a mosquito salivary protein family. J Biol Chem 281: 19351942.[Crossref] [Google Scholar]
  89. Calvo E, Mans BJ, Ribeiro JM, Andersen JF, , 2009. Multifunctionality and mechanism of ligand binding in a mosquito antiinflammatory protein. Proc Natl Acad Sci USA 106: 37283733.[Crossref] [Google Scholar]
  90. Cupp MS, Cupp EW, , 2000. Antithrombin Protein and DNA Sequences from Black Fly. USA. [Google Scholar]
  91. Stevenson KJ, Poller L, , 1982. The procoagulant activity of partial thromboplastin extracts: the role of phosphatidyl serine. Thromb Res 26: 341350.[Crossref] [Google Scholar]
  92. Simons FE, Peng Z, , 2001. Mosquito allergy: recombinant mosquito salivary antigens for new diagnostic tests. Int Arch Allergy Immunol 124: 403405.[Crossref] [Google Scholar]
  93. Calvo E, Tokumasu F, Marinotti O, Villeval JL, Ribeiro JM, Francischetti IM, , 2007. Aegyptin, a novel mosquito salivary gland protein, specifically binds to collagen and prevents its interaction with platelet glycoprotein VI, integrin alpha2beta1, and von Willebrand factor. J Biol Chem 282: 2692826938.[Crossref] [Google Scholar]
  94. Yoshida S, Sudo T, Niimi M, Tao L, Sun B, Kambayashi J, Watanabe H, Luo E, Matsuoka H, , 2008. Inhibition of collagen-induced platelet aggregation by anopheline antiplatelet protein, a saliva protein from a malaria vector mosquito. Blood 111: 20072014.[Crossref] [Google Scholar]
  95. Grimaldi D, Engel M, , 2005. Evolution of the Insects. New York: Cambridge University Press. [Google Scholar]
  96. Cupp MS, Ribeiro JM, Cupp EW, , 1994. Vasodilative activity in black fly salivary glands. Am J Trop Med Hyg 50: 241246. [Google Scholar]
  97. Cupp MS, Ribeiro JM, Champagne DE, Cupp EW, , 1998. Analyses of cDNA and recombinant protein for a potent vasoactive protein in saliva of a blood-feeding black fly, Simulium vittatum . J Exp Biol 201: 15531561. [Google Scholar]
  98. Pinnell SR, , 1985. Regulation of collagen biosynthesis by ascorbic acid: a review. Yale J Biol Med 58: 553559. [Google Scholar]
  99. Rydengard V, Andersson Nordahl E, Schmidtchen A, , 2006. Zinc potentiates the antibacterial effects of histidine-rich peptides against Enterococcus faecalis . FEBS J 273: 23992406.[Crossref] [Google Scholar]
  100. Nishikawa M, Ogawa K, , 2004. Antimicrobial activity of a chelatable poly(arginyl-histidine) produced by the ergot fungus Verticillium kibiense . Antimicrob Agents Chemother 48: 229235.[Crossref] [Google Scholar]
  101. Loomans HJ, Hahn BL, Li QQ, Phadnis SH, Sohnle PG, , 1998. Histidine-based zinc-binding sequences and the antimicrobial activity of calprotectin. J Infect Dis 177: 812814.[Crossref] [Google Scholar]
  102. Tanaka H, Chiba H, Inokoshi J, Kuno A, Sugai T, Takahashi A, Ito Y, Tsunoda M, Suzuki K, Takenaka A, Sekiguchi T, Umeyama H, Hirabayashi J, Omura S, , 2009. Mechanism by which the lectin actinohivin blocks HIV infection of target cells. Proc Natl Acad Sci USA 106: 1563315638.[Crossref] [Google Scholar]
  103. Femiano F, , 2007. Pemphigus vulgaris: recent advances in our understanding of its pathogenesis. Minerva Stomatol 56: 215223. [Google Scholar]
  104. Grando SA, , 2006. Cholinergic control of epidermal cohesion. Exp Dermatol 15: 265282.[Crossref] [Google Scholar]
  105. Bazzoni G, , 2003. The JAM family of junctional adhesion molecules. Curr Opin Cell Biol 15: 525530.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 18 Dec 2009
  • Accepted : 23 Feb 2010
  • Published online : 04 Jun 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error