Volume 83, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Severe malaria represents a clinical spectrum of disease. We propose that innate immune inflammatory responses to malaria play key roles in the pathogenesis and clinical outcomes of distinct severe malaria syndromes. To investigate this hypothesis, mice deficient in IRAK4, central to Toll-like receptor (TLR)-mediated signaling, were studied in two experimental models of malaria: (PbA) and (PccAS). mice had decreased pro-inflammatory cytokine production during infection in both models. However, animals were relatively protected from PbA-associated symptoms compared with wild-type mice, whereas animals were more susceptible to PccASassociated disease. These results show that IRAK4-mediated innate immune inflammatory responses play critical roles in divergent clinical outcomes in murine malaria models. As such, integrated approaches, using more than one model, are required to fully understand the parasite/host interactions that characterize severe malaria, and more importantly, to fully assess the effect of adjunctive therapies targeting innate immune responses to malaria.


Article metrics loading...

Loading full text...

Full text loading...



  1. Matos DS, Azeredo-Coutinho RB, Schubach A, Conceicao-Silva F, Baptista C, Moreira JS, Mendonca SC, , 2005. Differential interferon-gamma production characterizes the cytokine responses to Leishmania and Mycobacterium leprae antigens in concomitant mucocutaneous leishmaniasis and lepromatous leprosy. Clin Infect Dis 40: e5e12.[Crossref]
  2. Walker SL, Lockwood DN, , 2007. Leprosy. Clin Dermatol 25: 165172.[Crossref]
  3. World Health Organization, 2000. Communicable diseases cluster: severe falciparum malaria. Trans R Soc Trop Med Hyg 94 (Suppl 1): S1S90.
  4. Mackintosh CL, Beeson JG, Marsh K, , 2004. Clinical features and pathogenesis of severe malaria. Trends Parasitol 20: 597603.[Crossref]
  5. Stevenson MM, Riley EM, , 2004. Innate immunity to malaria. Nat Rev Immunol 4: 169180.[Crossref]
  6. Finney CA, Liles WC, Kain KC, , 2008. Severe malaria and host paradigm shift in therapeutic strategies to improve clinical outcome. Drug Discov Today Dis Mech 4: 207214.[Crossref]
  7. Walther M, Woodruff J, Edele F, Jeffries D, Tongren JE, King E, Andrews L, Bejon P, Gilbert SC, De Souza JB, Sinden R, Hill AV, Riley EM, , 2006. Innate immune responses to human malaria: heterogeneous cytokine responses to blood-stage Plasmodium falciparum correlate with parasitological and clinical outcomes. J Immunol 177: 57365745.[Crossref]
  8. Hunt NH, Grau GE, , 2003. Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol 24: 491499.[Crossref]
  9. Grau GE, Fajardo LF, Piguet PF, Allet B, Lambert PH, Vassalli P, , 1987. Tumor necrosis factor (cachectin) as an essential mediator in murine cerebral malaria. Science 237: 12101212.[Crossref]
  10. Rudin W, Favre N, Bordmann G, Ryffel B, , 1997. Interferon-gamma is essential for the development of cerebral malaria. Eur J Immunol 27: 810815.[Crossref]
  11. Hernandez-Valladares M, Naessens J, Musoke AJ, Sekikawa K, Rihet P, Ole-Moiyoi OK, Busher P, Iraqi FA, , 2006. Pathology of Tnf-deficient mice infected with Plasmodium chabaudi adami 408XZ. Exp Parasitol 114: 271278.[Crossref]
  12. Su Z, Stevenson MM, , 2000. Central role of endogenous gamma interferon in protective immunity against blood-stage Plasmodium chabaudi AS infection. Infect Immun 68: 43994406.[Crossref]
  13. de Kossodo S, Grau GE, , 1993. Role of cytokines and adhesion molecules in malaria immunopathology. Stem Cells 11: 4148.[Crossref]
  14. Grau GE, Piguet PF, Vassalli P, Lambert PH, , 1989. Tumor-necrosis factor and other cytokines in cerebral malaria: experimental and clinical data. Immunol Rev 112: 4970.[Crossref]
  15. Rest JR, , 1982. Cerebral malaria in inbred mice. I. A new model and its pathology. Trans R Soc Trop Med Hyg 76: 410415.[Crossref]
  16. Cross CE, Langhorne J, , 1998. Plasmodium chabaudi chabaudi (AS): inflammatory cytokines and pathology in an erythrocytic-stage infection in mice. Exp Parasitol 90: 220229.[Crossref]
  17. Jacobs P, Radzioch D, Stevenson MM, , 1996. A Th1-associated increase in tumor necrosis factor alpha expression in the spleen correlates with resistance to blood-stage malaria in mice. Infect Immun 64: 535541.
  18. Kim TW, Staschke K, Bulek K, Yao J, Peters K, Oh KH, Vandenburg Y, Xiao H, Qian W, Hamilton T, Min B, Sen G, Gilmour R, Li X, , 2007. A critical role for IRAK4 kinase activity in Toll-like receptor-mediated innate immunity. J Exp Med 204: 10251036.[Crossref]
  19. Suzuki N, Chen NJ, Millar DG, Suzuki S, Horacek T, Hara H, Bouchard D, Nakanishi K, Penninger JM, Ohashi PS, Yeh WC, , 2003. IL-1 receptor-associated kinase 4 is essential for IL-18-mediated NK and Th1 cell responses. J Immunol 170: 40314035.[Crossref]
  20. Griffith JW, O'Connor C, Bernard K, Town T, Goldstein DR, Bucala R, , 2007. Toll-like receptor modulation of murine cerebral malaria is dependent on the genetic background of the host. J Infect Dis 196: 15531564.[Crossref]
  21. Togbe D, Schofield L, Grau GE, Schnyder B, Boissay V, Charron S, Rose S, Beutler B, Quesniaux VF, Ryffel B, , 2007. Murine cerebral malaria development is independent of toll-like receptor signaling. Am J Pathol 170: 16401648.[Crossref]
  22. Cramer JP, Lepenies B, Kamena F, Holscher C, Freudenberg MA, Burchard GD, Wagner H, Kirschning CJ, Liu X, Seeberger PH, Jacobs T, , 2008. MyD88/IL-18-dependent pathways rather than TLRs control early parasitaemia in non-lethal Plasmodium yoelii infection. Microbes Infect 10: 12591265.[Crossref]
  23. Medzhitov R, , 2001. Toll-like receptors and innate immunity. Nat Rev Immunol 1: 135145.[Crossref]
  24. Picard C, Puel A, Bonnet M, Ku CL, Bustamante J, Yang K, Soudais C, Dupuis S, Feinberg J, Fieschi C, Elbim C, Hitchcock R, Lammas D, Davies G, Al-Ghonaium A, Al-Rayes H, Al-Jumaah S, Al-Hajjar S, Al-Mohsen IZ, Frayha HH, Rucker R, Hawn TR, Aderem A, Tufenkeji H, Haraguchi S, Day NK, Good RA, Gougerot-Pocidalo MA, Ozinsky A, Casanova JL, , 2003. Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299: 20762079.[Crossref]
  25. Krishnegowda G, Hajjar AM, Zhu J, Douglass EJ, Uematsu S, Akira S, Woods AS, Gowda DC, , 2005. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J Biol Chem 280: 86068616.[Crossref]
  26. Furuta T, Imajo-Ohmi S, Fukuda H, Kano S, Miyake K, Watanabe N, , 2008. Mast cell-mediated immune responses through IgE antibody and Toll-like receptor 4 by malarial peroxiredoxin. Eur J Immunol 38: 13411350.[Crossref]
  27. Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S, Yamamoto M, Takeuchi O, Itagaki S, Kumar N, Horii T, Akira S, , 2005. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med 201: 1925.[Crossref]
  28. Parroche P, Lauw FN, Goutagny N, Latz E, Monks BG, Visintin A, Halmen KA, Lamphier M, Olivier M, Bartholomeu DC, Gazzinelli RT, Golenbock DT, , 2007. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci USA 104: 19191924.[Crossref]
  29. Lepenies B, Cramer JP, Burchard GD, Wagner H, Kirschning CJ, Jacobs T, , 2008. Induction of experimental cerebral malaria is independent of TLR2/4/9. Med Microbiol Immunol (Berl) 197: 3944.[Crossref]
  30. Mockenhaupt FP, Cramer JP, Hamann L, Stegemann MS, Eckert J, Oh NR, Otchwemah RN, Dietz E, Ehrhardt S, Schroder NW, Bienzle U, Schumann RR, , 2006. Toll-like receptor (TLR) polymorphisms in African children: common TLR-4 variants predispose to severe malaria. Proc Natl Acad Sci USA 103: 177182.[Crossref]
  31. Mockenhaupt FP, Hamann L, von Gaertner C, Bedu-Addo G, von Kleinsorgen C, Schumann RR, Bienzle U, , 2006. Common polymorphisms of toll-like receptors 4 and 9 are associated with the clinical manifestation of malaria during pregnancy. J Infect Dis 194: 184188.[Crossref]
  32. Khor CC, Chapman SJ, Vannberg FO, Dunne A, Murphy C, Ling EY, Frodsham AJ, Walley AJ, Kyrieleis O, Khan A, Aucan C, Segal S, Moore CE, Knox K, Campbell SJ, Lienhardt C, Scott A, Aaby P, Sow OY, Grignani RT, Sillah J, Sirugo G, Peshu N, Williams TN, Maitland K, Davies RJ, Kwiatkowski DP, Day NP, Yala D, Crook DW, Marsh K, Berkley JA, O'Neill LA, Hill AV, , 2007. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet 39: 523528.[Crossref]
  33. Cadman ET, Abdallah AY, Voisine C, Sponaas AM, Corran P, Lamb T, Brown D, Ndungu F, Langhorne J, , 2008. Alterations of splenic architecture in malaria are induced independently of Toll-like receptors 2, 4, and 9 or MyD88 and may affect antibody affinity. Infect Immun 76: 39243931.[Crossref]
  34. Su Z, Stevenson MM, , 2002. IL-12 is required for antibody-mediated protective immunity against blood-stage Plasmodium chabaudi AS malaria infection in mice. J Immunol 168: 13481355.[Crossref]
  35. van der Heyde HC, Pepper B, Batchelder J, Cigel F, Weidanz WP, , 1997. The time course of selected malarial infections in cytokine-deficient mice. Exp Parasitol 85: 206213.[Crossref]
  36. Stevenson MM, Tam MF, , 1993. Differential induction of helper T cell subsets during blood-stage Plasmodium chabaudi AS infection in resistant and susceptible mice. Clin Exp Immunol 92: 7783.[Crossref]
  37. Li C, Sanni LA, Omer F, Riley E, Langhorne J, , 2003. Pathology of Plasmodium chabaudi chabaudi infection and mortality in interleukin-10-deficient mice are ameliorated by anti-tumor necrosis factor alpha and exacerbated by anti-transforming growth factor beta antibodies. Infect Immun 71: 48504856.[Crossref]
  38. de Souza JB, Hafalla JC, Riley EM, Couper KN, , 2009. Cerebral malaria: why experimental murine models are required to understand the pathogenesis of disease. Parasitology 137: 755772.[Crossref]
  39. Erdman LK, Cosio G, Helmers AJ, Gowda DC, Grinstein S, Kain KC, , 2009. CD36 and TLR interactions in inflammation and phagocytosis: implications for malaria. J Immunol 183: 64526459.[Crossref]
  40. Sponaas AM, Freitas do Rosario AP, Voisine C, Mastelic B, Thompson J, Koernig S, Jarra W, Renia L, Mauduit M, Potocnik AJ, Langhorne J, , 2009. Migrating monocytes recruited to the spleen play an important role in control of blood stage malaria. Blood 114: 55225531.[Crossref]
  41. Nie CQ, Bernard NJ, Schofield L, Hansen DS, , 2007. CD4+ CD25+ regulatory T cells suppress CD4+ T-cell function and inhibit the development of Plasmodium berghei-specific TH1 responses involved in cerebral malaria pathogenesis. Infect Immun 75: 22752282.[Crossref]
  42. Steeg C, Adler G, Sparwasser T, Fleischer B, Jacobs T, , 2009. Limited role of CD4+Foxp3+ regulatory T cells in the control of experimental cerebral malaria. J Immunol 183: 70147022.[Crossref]
  43. Coban C, Ishii KJ, Uematsu S, Arisue N, Sato S, Yamamoto M, Kawai T, Takeuchi O, Hisaeda H, Horii T, Akira S, , 2007. Pathological role of Toll-like receptor signaling in cerebral malaria. Int Immunol 19: 6779.[Crossref]
  44. Franklin BS, Rodrigues SO, Antonelli LR, Oliveira RV, Goncalves AM, Sales-Junior PA, Valente EP, Alvarez-Leite JI, Ropert C, Golenbock DT, Gazzinelli RT, , 2007. MyD88-dependent activation of dendritic cells and CD4(+) T lymphocytes mediates symptoms, but is not required for the immunological control of parasites during rodent malaria. Microbes Infect 9: 881890.[Crossref]
  45. Dondorp A, Nosten F, Stepniewska K, Day N, White N, , 2005. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 366: 717725.[Crossref]
  46. Maude RJ, Pontavornpinyo W, Saralamba S, Aguas R, Yeung S, Dondorp AM, Day NP, White NJ, White LJ, , 2009. The last man standing is the most resistant: eliminating artemisinin-resistant malaria in Cambodia. Malar J 8: 31.[Crossref]
  47. Kwiatkowski D, Molyneux ME, Stephens S, Curtis N, Klein N, Pointaire P, Smit M, Allan R, Brewster DR, Grau GE, , 1993. Anti-TNF therapy inhibits fever in cerebral malaria. Q J Med 86: 9198.
  48. Parquet V, Briolant S, Torrentino-Madamet M, Henry M, Almeras L, Amalvict R, Baret E, Fusai T, Rogier C, Pradines B, , 2009. Atorvastatin is a promising partner for antimalarial drugs in treatment of Plasmodium falciparum malaria. Antimicrob Agents Chemother 53: 22482252.[Crossref]
  49. Prasad K, Garner P, , 2000. Steroids for treating cerebral malaria. Cochrane Database Syst Rev CD000972.
  50. Schofield L, Hewitt MC, Evans K, Siomos MA, Seeberger PH, , 2002. Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature 418: 785789.[Crossref]
  51. Tsutsui N, Kamiyama T, , 1998. Suppression of in vitro IFN-gamma production by spleen cells of Plasmodium chabaudi-infected C57BL/10 mice exposed to dexamethasone at a low dose. Int J Immunopharmacol 20: 141152.[Crossref]
  52. Wassmer SC, Cianciolo GJ, Combes V, Grau GE, , 2006. LMP-420, a new therapeutic approach for cerebral malaria? Med Sci (Paris) 22: 343345.[Crossref]
  53. Coban C, Ishii KJ, Horii T, Akira S, , 2007. Manipulation of host innate immune responses by the malaria parasite. Trends Microbiol 15: 271278.[Crossref]
  54. Hayton K, Su XZ, , 2004. Genetic and biochemical aspects of drug resistance in malaria parasites. Curr Drug Targets Infect Disord 4: 110.[Crossref]

Data & Media loading...

Supplementary Data

Supplementary Table

  • Received : 13 Dec 2009
  • Accepted : 12 Mar 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error