Volume 82, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



The immunoreactivity of EchiTAb-Plus-ICP, an antivenom developed for the treatment of snakebite envenoming in sub-Saharan Africa, to venoms of seven and species, was assessed by “antivenomics.” This proteomic approach is based on the ability of an antivenom to immunodeplete homologous or heterologous venom proteins. Our results show an extensive cross-reactivity of this antivenom against all and venoms studied, as revealed by the complete immunodepletion of the majority of venom components, including metalloproteinases, serine proteinases, C-type lectin-like proteins, some phospholipases A and L-amino acid oxidase. However, some phospholipases A, disintegrins and proteinase inhibitors were immunodepleted to only a partial extent. These results support the hypothesis that immunizing horses with a mixture of the venoms of , , and generates antibodies capable of recognizing the majority of components of medically-relevant homologous and heterologous viperid venoms of the genera and from sub-Saharan Africa.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Chippaux JP, , 1998. Snake-bites: appraisal of the global situation. Bull World Health Organ 76: 515524. [Google Scholar]
  2. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, Savioli L, Lalloo DG, da Silva HJ, , 2008. The global burden of snakebite: a literature analysis and modeling based on regional estimates of envenoming and deaths. PLoS Med 5: e218.[Crossref] [Google Scholar]
  3. Snow RW, Bronzan R, Roques T, Nyamawi C, Murphy S, Marsh K, , 1994. The prevalence and morbidity of snake bite and treatment-seeking behaviour among a rural Kenyan population. Ann Trop Med Parasitol 88: 665671.[Crossref] [Google Scholar]
  4. Warrell DA, Meier J, White J, , 1995. Clinical toxicology of snakebite in Africa and the Middle East/Arabian peninsula. , eds. Handbook of Clinical Toxicology of Animal Venoms and Poisons. Boca Raton, FL: CRC Press, 433492. [Google Scholar]
  5. Chippaux JP, Ménez A, , 2002. The treatment of snake bites: analysis of requirements and assessment of therapeutic efficacy in tropical Africa. , ed. Perspectives in Molecular Toxinology. England: John Wiley, 457472. [Google Scholar]
  6. World Health Organization 2007. Rabies and Envenomings: A Neglected Public Health Issue. Geneva: World Health Organization. [Google Scholar]
  7. Theakston RD, Warrell DA, Griffiths E, , 2003. Report of a WHO workshop on the standardization and control of antivenoms. Toxicon 41: 541557.[Crossref] [Google Scholar]
  8. Lalloo DG, Theakston RD, , 2003. Snake antivenoms. J Toxicol Clin Toxicol 41: 317327.[Crossref] [Google Scholar]
  9. Gutiérrez JM, León G, de Lima ME, Pimenta AM, Martin-Euclairte MF, Zingali RB, Rochat H, , 2009. Snake antivenoms. Technological, clinical and public health issues. , eds. Animal Toxins: State of the Art Perspectives in Health and Biotechnology. Belo Horizonte: Editora UFMG, 393421. [Google Scholar]
  10. Theakston RD, Warrell DA, , 2000. Crisis in antivenom supply for Africa. Lancet 356: 2104.[Crossref] [Google Scholar]
  11. Stock RP, Massougbodji A, Alagón A, Chippaux JP, , 2007. Bringing antivenoms to sub-Saharan Africa. Nat Biotechnol 25: 173177.[Crossref] [Google Scholar]
  12. Visser LE, Kyei-Faried S, Belcher DW, Geelhoed DW, van Leeuwen JS, van Roosmalen J, , 2008. Failure of a new antivenom to treat Echis ocellatus snake bite in rural Ghana: the importance of quality surveillance. Trans R Soc Trop Med Hyg 102: 445450.[Crossref] [Google Scholar]
  13. Warrell DA, , 2008. Unscrupulous marketing of snake bite antivenoms in Africa and Papua New Guinea: choosing the right product–‘what's in a name?’ Trans R Soc Trop Med Hyg 102: 397399.[Crossref] [Google Scholar]
  14. Gutiérrez JM, Theakston RD, Warrell DA, , 2006. Confronting the neglected problem of snake bite envenoming: the need for a global partnership. PLoS Med 3: e412.[Crossref] [Google Scholar]
  15. Williams D, Gutiérrez JM, Harrison RA, Warrell DA, White J, Winkel KD, Gopalakrishnakone P, , 2010. An antidote for snake bite: The Global Snake Bite Initiative. Lancet 375: 8991.[Crossref] [Google Scholar]
  16. Meier J, Meier J, White J, , 1995. Commercially available antivenoms (“hyperimmune sera,” “antivenins,” “antisera”) for antivenom therapy. , eds. Handbook of Clinical Toxicology of Animal Venoms and Poisons. Boca Raton, FL: CRC Press, 689721. [Google Scholar]
  17. Meyer WP, Habib AG, Onayade AA, Yakubu A, Smith DC, Nasidi A, Daudu IJ, Warrell DA, Theakston RD, , 1997. First clinical experiences with a new ovine Fab Echis ocellatus snake bite antivenom in Nigeria: randomized comparative trial with Institute Pasteur serum (Ipser) Africa antivenom. Am J Trop Med Hyg 56: 291300. [Google Scholar]
  18. Ramos-Cerrillo B, de Roodt AR, Chippaux JP, Olguín L, Casasola A, Guzmán G, Paniagua-Solís J, Alagón A, Stock RP, , 2008. Characterization of a new polyvalent antivenom (Antivipmyn Africa) against African vipers and elapids. Toxicon 52: 881888.[Crossref] [Google Scholar]
  19. Gutiérrez JM, Rojas E, Quesada L, León G, Núñez J, Laing GD, Sasa M, Renjifo JM, Nasidi A, Warrell DA, Theakston RD, Rojas G, , 2005. Pan-African polyspecific antivenom produced by caprylic acid purification of horse IgG: an alternative to the antivenom crisis in Africa. Trans R Soc Trop Med Hyg 99: 468475.[Crossref] [Google Scholar]
  20. Segura Á, Villalta M, Herrera M, León G, Harrison R, Durfa N, Nasidi A, Calvete JJ, Theakston RD, Warrell DA, Gutiérrez JM, , 2010. Preclinical assessment of the efficacy of a new antivenom (EchiTAb-Plus-ICP) for the treatment of viper envenoming in sub-Saharan Africa. Toxicon 55: 369374.[Crossref] [Google Scholar]
  21. Calvete JJ, Escolano J, Sanz L, , 2007. Snake venomics of Bitis species reveals large intragenus venom toxin composition variation. Application to taxonomy of congeneric taxa. J Proteome Res 6: 27322745.[Crossref] [Google Scholar]
  22. Currier RB, Harrison RA, Rowley RD, Laing GD, Wagstaff SC, , 2010. Intra-species variation in venom composition, immunoreactivity and enzyme function of the African Puff Adder (Bitis arietans). Toxicon 55: 864873.[Crossref] [Google Scholar]
  23. Theakston RD, Reid HA, , 1983. Development of simple standard assay procedures for the characterization of snake venoms. Bull World Health Organ 61: 949956. [Google Scholar]
  24. Theakston RD, Harris JB, , 1986. Characterization of venoms and standardization of antivenoms. , ed. Natural Toxins–Animal, Plant and Microbial. Oxford: Clarendon Press, 287303. [Google Scholar]
  25. Gutiérrez JM, Rojas G, Lomonte B, Gené JA, Chaves F, Alvarado J, Rojas E, , 1990. Standardization of assays for testing the neutralizing ability of antivenoms. Toxicon 28: 11271129.[Crossref] [Google Scholar]
  26. Gutiérrez JM, Rojas G, Bogarín G, Lomonte B, Bon C, Goyffon M, , 1996. Evaluation of the neutralizing ability of antivenoms for the treatment of snakebite envenoming in Central America. , eds. Envenomings and Their Treatments. Lyon: Fondation Marcel Mérieux, 223231. [Google Scholar]
  27. Abubakar SB, Abubakar IS, Habib AG, Nasidi A, Durfa N, Yusuf PO, Larnyang S, Garnvwa J, Sokomba E, Salako L, Laing GD, Theakston RD, Juszczak E, Alder N, Warrell DA, , Nigeria-UK EchiTab Study Group, 2010. Pre-clinical and preliminary dose-finding and safety studies to identify candidate antivenoms for treatment of envenoming by saw-scaled or carpet vipers (Echis ocellatus) in northern Nigeria. Toxicon 55: 719723. [Crossref] [Google Scholar]
  28. Lomonte B, Escolano J, Fernández J, Sanz L, Angulo Y, Gutiérrez JM, Calvete JJ, , 2008. Snake venomics and antivenomics of the arboreal neotopical pitvipers Bothriechis lateralis and Bothriehis schlegelii . J Proteome Res 7: 24452457.[Crossref] [Google Scholar]
  29. Gutiérrez JM, Lomonte B, León G, Alape-Girón A, Flores-Díaz M, Sanz L, Angulo Y, Calvete JJ, , 2009. Snake venomics and antivenomics: proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. J Proteomics 72: 165182.[Crossref] [Google Scholar]
  30. Gutiérrez JM, Sanz L, Escolano J, Fernández J, Lomonte B, Angulo Y, Rucavado A, Warrell DA, Calvete JJ, , 2008. Snake venomics of the Lesser Antillean pit vipers Bothrops caribbaeus and Bothrops lanceolatus: correlation with toxicological activities and immunoreactivity of a heterologous antivenom. J Proteome Res 7: 43964408.[Crossref] [Google Scholar]
  31. Calvete JJ, Marcinkiewicz C, Sanz L, , 2007. Snake venomics of Bitis gabonica gabonica. Protein family composition, subunit organization of venom toxins, and characterization of dimeric disintegrins bitisgabonin-1 and bitisgabonin-2. J Proteome Res 6: 326336.[Crossref] [Google Scholar]
  32. Núñez V, Cid P, Sanz L, De La Torre P, Angulo Y, Lomonte B, Gutiérrez JM, Calvete JJ, , 2009. Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism. J Proteomics 73: 5778.[Crossref] [Google Scholar]
  33. Fasman DG, , ed., 1992. Practical Handbook of Biochemistry and Molecular Biology. Boston, MA: CRC Press. [Google Scholar]
  34. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, , 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 33893402.[Crossref] [Google Scholar]
  35. Le Blanc JC, Hager JW, Ilisiu AM, Hunter C, Zhong F, Chu I, , 2003. Unique scanning capabilities of a new hybrid linear ion trap mass spectrometer (QTRAP) used for high sensitivity proteomics applications. Proteomics 3: 859869.[Crossref] [Google Scholar]
  36. Juárez P, Wagstaff SC, Oliver J, Sanz L, Harrison RA, Calvete JJ, , 2006. Molecular cloning of disintegrin-like transcript BA-5A from Bitis arietans venom gland cDNA library: a putative intermediate in the evolution of the long chain disintegrin bitistatin. J Mol Evol 63: 142152.[Crossref] [Google Scholar]
  37. Calvete JJ, Juárez P, Sanz L, , 2007. Snake venomics. Strategy and applications. J Mass Spectrom 42: 14051414.[Crossref] [Google Scholar]
  38. Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutiérrez JM, , 2009. Venoms, venomics, antivenomics. FEBS Lett 583: 17361743.[Crossref] [Google Scholar]
  39. Calvete JJ, Borges A, Segura A, Flores-Díaz M, Alape-Girón A, Gutiérrez JM, Diez N, De Sousa L, Kiriakos D, Sánchez E, Faks JG, Escolano J, Sanz L, , 2009. Snake venomics and antivenomics of Bothrops colombiensis, a medically important pitviper of the Bothrops atrox-asper complex endemic to Venezuela: contributing to its taxonomy and snakebite management. J Proteomics 72: 227240.[Crossref] [Google Scholar]
  40. Angulo Y, Escolano J, Lomonte B, Gutiérrez JM, Sanz L, Calvete JJ, , 2008. Snake venomics of Central American pitvipers. Clues for rationalizing the distinct envenomation profiles of Atropoides nummifer and Atropoides picadoi . J Proteome Res 7: 708719.[Crossref] [Google Scholar]
  41. Sanz L, Ayvazyan N, Calvete JJ, , 2008. Snake venomics of the Armenian mountain vipers Macrovipera lebetina obtusa and Vipera raddei . J Proteomics 71: 198209.[Crossref] [Google Scholar]
  42. Alape-Girón A, Sanz L, Escolano J, Flores-Díaz M, Madrigal M, Sasa M, Calvete JJ, , 2008. Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations. J Proteome Res 7: 35563571.[Crossref] [Google Scholar]
  43. Wagstaff SC, Sanz L, Juárez P, Harrison RA, Calvete JJ, , 2009. Combined snake venomics and venom gland transcriptomic analysis of the ocellated carpet viper, Echis ocellatus . J Proteomics 71: 609623.[Crossref] [Google Scholar]
  44. Fox JW, Serrano SM, , 2008. Exploring snake venom proteomes: multifaceted analyses for complex toxin mixtures. Proteomics 8: 909920.[Crossref] [Google Scholar]
  45. Gutiérrez JM, Rucavado A, Escalante T, Díaz C, , 2005. Hemorrhage induced by snake venom metalloproteinases: biochemical and biophysical mechanisms involved in microvessel damage. Toxicon 45: 9971011.[Crossref] [Google Scholar]
  46. Fox JW, Serrano SM, , 2005. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon 45: 969985.[Crossref] [Google Scholar]
  47. Nishida S, Fujita T, Kohno N, Atoda H, Morita T, Takeya H, Kido I, Paine MJ, Kawabata S, Iwanaga S, , 1995. cDNA cloning and deduced amino acid sequence of prothrombin activator (ecarin) from Kenyan Echis carinatus venom. Biochemistry 7: 17711778.[Crossref] [Google Scholar]
  48. Yamada D, Sekiya F, Morita T, , 1996. Isolation and characterization of carinactivase, a novel prothrombin activator in Echis carinatus venom with a unique catalytic mechanism. J Biol Chem 271: 52005207.[Crossref] [Google Scholar]
  49. Howes JM, Wilkinson MC, Theakston RD, Laing GD, , 2003. The purification and partial characterization of two novel metalloproteinases from the venom of the West African carpet viper, Echis ocellatus . Toxicon 42: 2127.[Crossref] [Google Scholar]
  50. Howes JM, Kamiguti AS, Theakston RD, Wilkinson MC, Laing GD, , 2005. Effects of three novel metalloproteinases from the venom of the West African saw-scaled viper, Echis ocellatus on blood coagulation and platelets. Biochim Biophys Acta 1724: 194202.[Crossref] [Google Scholar]
  51. Markland FS, , 1998. Snake venoms and the hemostatic system. Toxicon 36: 17491800.[Crossref] [Google Scholar]
  52. Kini RM, , 2003. Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon 42: 827840.[Crossref] [Google Scholar]
  53. Polgár J, Magnenat EM, Peitsch MC, Wells TN, Clemetson KJ, , 1996. Asp-49 is not an absolute prerequisite for the enzymatic activity of low-Mr phospholipases A2: purification, characterization and computer modeling of an enzymatically active Ser-49 phospholipase A2, ecarpholin S, from the venom of Echis carinatus sochureki (saw-scaled viper). Biochem J 319: 961968.[Crossref] [Google Scholar]
  54. Joubert FJ, Townshend GS, Botes DP, , 1983. Snake venoms. Purification, some properties of two phospholipases A2 (CM-I and CM-II) and the amino-acid sequence of CM-II of Bitis nasicornis (horned adder) venom. Hoppe Seylers Z Physiol Chem 364: 17171726.[Crossref] [Google Scholar]
  55. Harrison RA, , 2004. Development of venom toxin-specific antibodies by DNA immunisation: rationale and strategies to improve therapy of viper envenoming. Vaccine 22: 16481655.[Crossref] [Google Scholar]
  56. Wagstaff SC, Laing GD, Theakston RD, Papaspyridis C, Harrison RA, , 2006. Bioinformatics and multiepitope DNA immunization to design rational snake antivenom. PLoS Med 3: e184.[Crossref] [Google Scholar]
  57. Calvete JJ, Marcinkiewicz C, Monleón D, Esteve V, Celda B, Juárez P, Sanz L, , 2005. Snake venom disintegrins: evolution of structure and function. Toxicon 45: 10631074.[Crossref] [Google Scholar]
  58. Wagstaff SC, Favreau P, Cheneval O, Laing GD, Wilkinson MC, Miller RL, Stöcklin R, Harrison RA, , 2008. Molecular characterization of endogenous snake venom metalloproteinase inhibitors. Biochem Biophys Res Commun 365: 650656.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 07 Dec 2009
  • Accepted : 13 Feb 2010
  • Published online : 04 Jun 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error