Volume 83, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Southeast Asian ovalocytosis (SAO), α-thalassemia, and low expression of complement receptor 1 (CR1) have been associated with protection against severe malaria. In a cohort of children 5–14 years of age the effect of α-thalassemia, SAO (), CR1 polymorphisms, and Gerbich negativity () on risk of infections and uncomplicated illness were evaluated. The risk of acquiring polymerase chain reaction (PCR)-diagnosed infections was significantly lower for α-thalassemia heterozygotes (hazard ratio [HR]: 0.56) and homozygotes (HR: 0.51) than wild-type children. No such differences were seen in light of microscopy diagnosed infections ( = 0.71) or were α-thalassemia genotypes associated with a reduced risk of uncomplicated malaria. No significant associations between the risk of infection or illness were observed for any of the other red blood cell polymorphisms ( > 0.2). This suggests that these polymorphisms are not associated with significant protection against blood-stage infection or uncomplicated malaria in school-aged children.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Williams TN, , 2006. Red blood cell defects and malaria. Mol Biochem Parasitol 149: 121127.[Crossref] [Google Scholar]
  2. Serjeantson SW, , 1989. A selective advantage for the Gerbich-negative phenotype in malarious areas of Papua New Guinea. PNG Med J 32: 59. [Google Scholar]
  3. Patel SS, King CL, Mgone CS, Kazura JW, Zimmerman PA, , 2004. Glycophorin C (Gerbich antigen blood group) and band 3 polymorphisms in two malaria holoendemic regions of Papua New Guinea. Am J Hematol 75: 15.[Crossref] [Google Scholar]
  4. Cockburn IA, Mackinnon MJ, O'Donnell A, Allen SJ, Moulds JM, Baisor M, Bockarie M, Reeder JC, Rowe JA, , 2004. A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria. Proc Natl Acad Sci USA 101: 272277.[Crossref] [Google Scholar]
  5. Xiang L, Rundles JR, Hamilton DR, Wilson JG, , 1999. Quantitative alleles of CR1: coding sequence analysis and comparison of haplotypes in two ethnic groups. J Immunol 163: 49394945. [Google Scholar]
  6. Migot-Nabias F, Pelleau S, Watier L, Guitard J, Toly C, De Araujo C, Ngom MI, Chevillard C, Gaye O, Garcia A, , 2006. Red blood cell polymorphisms in relation to Plasmodium falciparum asymptomatic parasite densities and morbidity in Senegal. Microbes Infect 8: 23522358.[Crossref] [Google Scholar]
  7. Mockenhaupt FP, Ehrhardt S, Otchwemah R, Eggelte TA, Anemana SD, Stark K, Bienzle U, Kohne E, , 2004. Limited influence of haemoglobin variants on Plasmodium falciparum msp1 and msp2 alleles in symptomatic malaria. Trans R Soc Trop Med Hyg 98: 302310.[Crossref] [Google Scholar]
  8. Wambua S, Mwangi TW, Kortok M, Uyoga SM, Macharia AW, Mwacharo JK, Weatherall DJ, Snow RW, Marsh K, Williams TN, , 2006. The effect of alpha+-thalassaemia on the incidence of malaria and other diseases in children living on the coast of Kenya. PLoS Med 3: e158.[Crossref] [Google Scholar]
  9. Enevold A, Lusingu JP, Mmbando B, Alifrangis M, Lemnge MM, Bygbjerg IC, Theander TG, Vestergaard LS, , 2008. Reduced risk of uncomplicated malaria episodes in children with alpha+-thalassemia in northeastern Tanzania. Am J Trop Med Hyg 78: 714720. [Google Scholar]
  10. Williams TN, Maitland K, Bennett S, Ganczakowski M, Peto TE, Newbold CI, Bowden DK, Weatherall DJ, Clegg JB, , 1996. High incidence of malaria in alpha-thalassaemic children. Nature 383: 522525.[Crossref] [Google Scholar]
  11. Allen SJ, O'Donnell A, Alexander ND, Alpers MP, Peto TE, Clegg JB, Weatherall DJ, , 1997. alpha+-Thalassemia protects children against disease caused by other infections as well as malaria. Proc Natl Acad Sci USA 94: 1473614741.[Crossref] [Google Scholar]
  12. Fowkes FJ, Michon P, Pilling L, Ripley RM, Tavul L, Imrie HJ, Woods CM, Mgone CS, Luty AJ, Day KP, , 2008. Host erythrocyte polymorphisms and exposure to Plasmodium falciparum in Papua New Guinea. Malar J 7: 1.[Crossref] [Google Scholar]
  13. Maier AG, Duraisingh MT, Reeder JC, Patel SS, Kazura JW, Zimmerman PA, Cowman AF, , 2003. Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nat Med 9: 8792.[Crossref] [Google Scholar]
  14. Cortes A, Benet A, Cooke BM, Barnwell JW, Reeder JC, , 2004. Ability of Plasmodium falciparum to invade southeast Asian ovalocytes varies between parasite lines. Blood 104: 29612966.[Crossref] [Google Scholar]
  15. Patel SS, Mehlotra RK, Kastens W, Mgone CS, Kazura JW, Zimmerman PA, , 2001. The association of the glycophorin C exon 3 deletion with ovalocytosis and malaria susceptibility in the Wosera, Papua New Guinea. Blood 98: 34893491.[Crossref] [Google Scholar]
  16. Michon P, Cole-Tobian JL, Dabod E, Schoepflin S, Igu J, Susapu M, Tarongka N, Zimmerman PA, Reeder JC, Beeson JG, Schofield L, King CL, Mueller I, , 2007. The risk of malarial infections and disease in Papua New Guinean children. Am J Trop Med Hyg 76: 9971008. [Google Scholar]
  17. McNamara DT, Kasehagen LJ, Grimberg BT, Cole-Tobian J, Collins WE, Zimmerman PA, , 2006. Diagnosing infection levels of four human malaria parasite species by a polymerase chain reaction/ligase detection reaction fluorescent microsphere-based assay. Am J Trop Med Hyg 74: 413421. [Google Scholar]
  18. Kasehagen LJ, Mueller I, McNamara DT, Bockarie MJ, Kiniboro B, Rare L, Lorry K, Kastens W, Reeder JC, Kazura JW, Zimmerman PA, , 2006. Changing patterns of Plasmodium blood-stage infections in the Wosera region of Papua New Guinea monitored by light microscopy and high throughput PCR diagnosis. Am J Trop Med Hyg 75: 588596. [Google Scholar]
  19. Smith T, Genton B, Baea K, Gibson N, Taime J, Narara A, Al Yaman F, Beck HP, Hii J, Alpers M, , 1994. Relationships between Plasmodium falciparum infection and morbidity in a highly endemic area. Parasitology 109: 539549.[Crossref] [Google Scholar]
  20. Müller I, Genton B, Rare L, Kiniboro B, Kastens W, Zimmerman P, Kazura J, Alpers M, Smith TA, , 2009. Three different Plasmodium species show similar patterns of clinical tolerance of malaria infection. Malar J 8: 158.[Crossref] [Google Scholar]
  21. Chong SS, Boehm CD, Cutting GR, Higgs DR, , 2000. Simplified multiplex-PCR diagnosis of common southeast asian deletional determinants of alpha-thalassemia. Clin Chem 46: 16921695. [Google Scholar]
  22. Imrie H, Fowkes FJ, Michon P, Tavul L, Hume JC, Piper KP, Reeder JC, Day KP, , 2006. Haptoglobin levels are associated with haptoglobin genotype and alpha+-Thalassemia in a malaria-endemic area. Am J Trop Med Hyg 74: 965971. [Google Scholar]
  23. Jarolim P, Palek J, Amato D, Hassan K, Sapak P, Nurse GT, Rubin HL, Zhai S, Sahr KE, Liu SC, , 1991. Deletion in erythrocyte band 3 gene in malaria-resistant southeast Asian ovalocytosis. Proc Natl Acad Sci USA 88: 1102211026.[Crossref] [Google Scholar]
  24. Tavul L, Mueller I, Rare L, Lin E, Zimmerman PA, Reeder J, Siba P, Michon P, , 2008. Glycophorin C Δexon3 is not associated with protection against severe anaemia in Papua New Guinea. PNG Med J 51: 149154. [Google Scholar]
  25. Persson KE, McCallum FJ, Reiling L, Lister NA, Stubbs J, Cowman AF, Marsh K, Beeson JG, , 2008. Variation in use of erythrocyte invasion pathways by Plasmodium falciparum mediates evasion of human inhibitory antibodies. J Clin Invest 118: 342351.[Crossref] [Google Scholar]
  26. Gaunt TR, Rodriguez S, Day IN, , 2007. Cubic exact solutions for the estimation of pairwise haplotype frequencies: implications for linkage disequilibrium analyses and a web tool “CubeX.” BMC Bioinformatics 8: 428.[Crossref] [Google Scholar]
  27. Stanisic DI, Richards JS, McCallum FJ, Michon P, King CL, Schoepflin S, Gilson PR, Murphy VJ, Anders RF, Mueller I, Beeson JG, , 2009. Immunoglobulin G subclass-specific responses against Plasmodium falciparum merozoite antigens are associated with control of parasitemia and protection from symptomatic illness. Infect Immun 77: 11651174.[Crossref] [Google Scholar]
  28. Oppenheimer SJ, Hill AV, Gibson FD, Macfarlane SB, Moody JB, Pringle J, , 1987. The interaction of alpha thalassaemia with malaria. Trans R Soc Trop Med Hyg 81: 322326.[Crossref] [Google Scholar]
  29. Cowman AF, Crabb BS, , 2006. Invasion of red blood cells by malaria parasites. Cell 124: 755766.[Crossref] [Google Scholar]
  30. Mayer DC, Jiang L, Achur RN, Kakizaki I, Gowda DC, Miller LH, , 2006. The glycophorin C N-linked glycan is a critical component of the ligand for the Plasmodium falciparum erythrocyte receptor BAEBL. Proc Natl Acad Sci USA 103: 23582362.[Crossref] [Google Scholar]
  31. Genton B, Al Yaman F, Mgone CS, Alexander N, Paniu MM, Alpers MP, Mokela D, , 1995. Ovalocytosis and cerebral malaria. Nature 378: 564565.[Crossref] [Google Scholar]
  32. Allen SJ, O'Donnell A, Alexander ND, Mgone CS, Peto TE, Clegg JB, Alpers MP, Weatherall DJ, , 1999. Prevention of cerebral malaria in children in Papua New Guinea by southeast Asian ovalocytosis band 3. Am J Trop Med Hyg 60: 10561060. [Google Scholar]
  33. Cortes A, Mellombo M, Mgone CS, Beck HP, Reeder JC, Cooke BM, , 2005. Adhesion of Plasmodium falciparum-infected red blood cells to CD36 under flow is enhanced by the cerebral malaria-protective trait south-east Asian ovalocytosis. Mol Biochem Parasitol 142: 252257.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 30 Nov 2009
  • Accepted : 08 Apr 2010
  • Published online : 05 Oct 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error