Volume 82, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Implementation of helminth control programs requires information on the distribution and prevalence of infection to target mass treatment to areas of greatest need. In the absence of data, the question of how many schools/communities should be surveyed depends on the spatial heterogeneity of infection and the cost efficiency of surveys. We used geostatistical techniques to quantify the spatial heterogeneity of soil-transmitted helminths in multiple settings in eastern Africa, and using the example of Kenya, conducted conditional simulation to explore the implications of alternative sampling strategies in identifying districts requiring mass treatment. Cost analysis is included in the simulations using data from actual field surveys and control programs. The analysis suggests that sampling four or five schools in each district provides a cost-efficient strategy in identifying districts requiring mass treatment, and that efficiency of sampling was relatively insensitive to the number of children sampled per school.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 2006. Neglected Tropical Diseases: Hidden Successes, Emerging Opportunities. Available at: http://whqlibdoc.who.int/hq/2006/WHO_CDS_NTD_2006.2_eng.pdf. [Google Scholar]
  2. World Health Organization, 2006. Preventive Chemotherapy in Human Helminthiasis. Coordinated Use of Anthelmintihic Drugs in Control Interventions: A Manual for Health Professionals and Programme Managers. Geneva: World Health Organization. [Google Scholar]
  3. Baker MC, Mathieu E, Fleming FM, Deming M, King JD, Garba A, Koroma JB, Bockarie M, Kabore A, Sankara DP, Molyneux DH, , 2010. Mapping, monitoring, and surveillance of neglected tropical diseases: towards a policy framework. Lancet 375: 231238.[Crossref] [Google Scholar]
  4. Brooker S, Clements AC, Bundy DA, , 2006. Global epidemiology, ecology and control of soil-transmitted helminth infections. Adv Parasitol 62: 221261.[Crossref] [Google Scholar]
  5. Kurowski C, Wyss K, Abdulla S, Mills A, , 2007. Scaling up priority health interventions in Tanzania: the human resources challenge. Health Policy Plan 22: 113127.[Crossref] [Google Scholar]
  6. Mathieu E, Deming M, Lammie PJ, McLaughlin SI, Beach MJ, Domingue J, Addiss DG, , 2003. Comparison of methods for estimating drug coverage for filariasis elimination, Leogane Commune, Haiti. Trans R Soc Trop Med Hyg 97: 501505.[Crossref] [Google Scholar]
  7. Vlassoff C, Tanner M, , 1992. The relevance of rapid assessment to health research and interventions. Health Policy Plan 7: 19.[Crossref] [Google Scholar]
  8. Anker M, , 1991. Epidemiological and statistical methods for rapid health assessment: introduction. World Health Stat Q 44: 9497. [Google Scholar]
  9. Brooker S, Kabatereine NB, Gyapong JO, Stothard JR, Utzinger J, , 2009. Rapid mapping of schistosomiasis and other neglected tropical diseases in the context of integrated control programmes in Africa. Parasitology 136: 17071718.[Crossref] [Google Scholar]
  10. Lengeler C, Utzinger J, Tanner M, , 2002. Questionnaires for rapid screening of schistosomiasis in sub-Saharan Africa. Bull World Health Organ 80: 235242. [Google Scholar]
  11. Brooker S, Kabatereine NB, Myatt M, Russell Stothard J, Fenwick A, , 2005. Rapid assessment of Schistosoma mansoni: the validity, applicability and cost-effectiveness of the lot quality assurance sampling method in Uganda. Trop Med Int Health 10: 647658.[Crossref] [Google Scholar]
  12. Rabarijaona LP, Boisier P, Ravaoalimalala VE, Jeanne I, Roux JF, Jutand MA, Salamon R, , 2003. Lot quality assurance sampling for screening communities hyperendemic for Schistosoma mansoni . Trop Med Int Health 8: 322328.[Crossref] [Google Scholar]
  13. Myatt M, Limburg H, Minassian D, Katyola D, , 2003. Field trial of applicability of lot quality assurance sampling survey method for rapid assessment of prevalence of active trachoma. Bull World Health Organ 81: 877885. [Google Scholar]
  14. Rabarijaona L, Rakotomanana F, Ranaivo L, Raharimalala L, Modiano D, Boisier P, De Giorgi F, Raveloson N, Jambou R, , 2001. Validity of lot quality assurance sampling to optimize falciparum malaria surveys in low-transmission areas. Trans R Soc Trop Med Hyg 95: 267269.[Crossref] [Google Scholar]
  15. World Health Organization, 2005. Monitoring and Epidemiological Assessment of the Programme to Eliminate Lymphatic Filariasis at Implementation Unit Level. Geneva: World Health Organization. [Google Scholar]
  16. Noma M, Nwoke BE, Nutall I, Tambala PA, Enyong P, Namsenmo A, Remme J, Amazigo UV, Kale OO, Seketeli A, , 2002. Rapid epidemiological mapping of onchocerciasis (REMO): its application by the African Programme for Onchocerciasis Control (APOC). Ann Trop Med Parasitol 96 (Suppl 1): S29S39.[Crossref] [Google Scholar]
  17. Takougang I, Meremikwu M, Wandji S, Yenshu EV, Aripko B, Lamlenn SB, Eka BL, Enyong P, Meli J, Kale O, Remme JH, , 2002. Rapid assessment method for prevalence and intensity of Loa loa infection. Bull World Health Organ 80: 852858. [Google Scholar]
  18. Brooker S, Kabatereine NB, Tukahebwa EM, Kazibwe F, , 2004. Spatial analysis of the distribution of intestinal nematode infections in Uganda. Epidemiol Infect 132: 10651071.[Crossref] [Google Scholar]
  19. World Health Organization, 1991. Basic Laboratory Methods in Medical Parasitology. Geneva: World Health Organization. [Google Scholar]
  20. Kabatereine NB, Tukahebwa EM, Kazibwe F, Twa-Twa JM, Barenzi JF, Zaramba S, Stothard JR, Fenwick A, Brooker S, , 2005. Soil-transmitted helminthiasis in Uganda: epidemiology and cost of control. Trop Med Int Health 10: 11871189.[Crossref] [Google Scholar]
  21. Clements AC, Lwambo NJ, Blair L, Nyandindi U, Kaatano G, Kinung'hi S, Webster JP, Fenwick A, Brooker S, , 2006. Bayesian spatial analysis and disease mapping: tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania. Trop Med Int Health 11: 490503.[Crossref] [Google Scholar]
  22. Diggle PJ, Ribeiro PJ, Jnr, 2007. Model-Based Geostatistics. New York: Springer. [Google Scholar]
  23. Oliver MA, Muir KR, Webster R, Parkes SE, Cameron AH, Stevens MC, Mann JR, , 1992. A geostatistical approach to the analysis of pattern in rare disease. J Public Health Med 14: 280289. [Google Scholar]
  24. Cressie N, Elliott P, Wakefield JC, Best NG, Briggs DJ, , 2000. Geostatistical methods for mapping environmental exposures. , eds. Spatial Epidemiology, Methods and Applications. Oxford: Oxford University Press, 185204. [Google Scholar]
  25. Ribeiro PJ, Jnr Diggle PJ, , 2001. GeoR: A Package for Geostatistical Analysis. R-NEWS 1. Available at: http://cran.r-project.org/doc/Rnews. [Google Scholar]
  26. Goovaerts P, , 1997. Geostatistics for Natural Resources Evaluation. New York: Oxford University Press. [Google Scholar]
  27. Brooker S, Kabatereine NB, Smith JL, Mupfasoni D, Mwanje MT, Ndayishimiye O, Lwambo NJ, Mbotha D, Karanja P, Mwandawiro C, Muchiri E, Clements AC, Bundy DA, Snow RW, , 2009. An updated atlas of human helminth infections: the example of east Africa. Int J Health Geogr 8: 42.[Crossref] [Google Scholar]
  28. Booth M, Bundy DA, , 1995. Estimating the number of multiple-species geohelminth infections in human communities. Parasitology 111: 645653.[Crossref] [Google Scholar]
  29. World Health Organization, 2006. Preventative Chemotherapy in Human Helminthiasis. Geneva: World Health Organization. [Google Scholar]
  30. World Bank, 1993. World Development Report 1993: Investing in Health. New York: Oxford University Press. [Google Scholar]
  31. Walker D, Kumaranayake L, , 2002. Allowing for differential timing in cost analyses: discounting and annualization. Health Policy Plan 17: 112118.[Crossref] [Google Scholar]
  32. Hall A, Horton S, de Silva N, , 2009. The costs and cost-effectiveness of mass treatment for intestinal nematode worm infections using different treatment thresholds. PLoS Negl Trop Dis 3: e402.[Crossref] [Google Scholar]
  33. Brooker S, Kabatereine NB, Fleming F, Devlin N, , 2008. Cost and cost-effectiveness of nationwide school-based helminth control in Uganda: intra-country variation and effects of scaling-up. Health Policy Plan 23: 2435.[Crossref] [Google Scholar]
  34. Mabaso ML, Appleton CC, Hughes JC, Gouws E, , 2003. The effect of soil type and climate on hookworm (Necator americanus) distribution in KwaZulu-Natal, South Africa. Trop Med Int Health 8: 722727.[Crossref] [Google Scholar]
  35. Saathoff E, Olsen A, Sharp B, Kvalsvig JD, Appleton CC, Kleinschmidt I, , 2005. Ecologic covariates of hookworm infection and reinfection in rural Kwazulu-natal/south Africa: a geographic information system-based study. Am J Trop Med Hyg 72: 384391. [Google Scholar]
  36. Brooker S, , 2007. Spatial epidemiology of human schistosomiasis in Africa: risk models, transmission dynamics and control. Trans R Soc Trop Med Hyg 101: 18.[Crossref] [Google Scholar]
  37. Srividya A, Michael E, Palaniyandi M, Pani SP, Das PK, , 2002. A geostatistical analysis of the geographic distribution of lymphatic filariasis prevalence in southern India. Am J Trop Med Hyg 67: 480489. [Google Scholar]
  38. Alexander ND, Moyeed RA, Hyun PJ, Dimber ZB, Bockarie MJ, Stander J, Grenfell BT, Kazura JW, Alpers MP, , 2003. Spatial variation of Anopheles-transmitted Wuchereria bancrofti and Plasmodium falciparum infection densities in Papua New Guinea. Filaria J 2: 14.[Crossref] [Google Scholar]
  39. Shope RE, Guerrant RL, Walker DH, Weller PF, , 1999. Factors influencing the geographic distribution and incidence of tropical infectious diseases. , eds. Tropical Infectious Diseases. Principles, Pathogens and Practice. London: Churchill Livingstone, 1621. [Google Scholar]
  40. Gyapong JO, Remme JH, , 2001. The use of grid sampling methodology for rapid assessment of the distribution of Bancroftian filariasis . Trans R Soc Trop Med Hyg 95: 681686.[Crossref] [Google Scholar]
  41. Ansell J, Guyatt HL, , 2002. Comparative cost-effectiveness of diagnostic tests for urinary schistosomiasis and the implications for school health programmes. Ann Trop Med Parasitol 96: 145153.[Crossref] [Google Scholar]
  42. Carabin H, Guyatt H, Engels D, , 2000. A comparative analysis of the cost-effectiveness of treatment based on parasitological and symptomatic screening for Schistosoma mansoni in Burundi. Trop Med Int Health 5: 192202.[Crossref] [Google Scholar]
  43. Muennig P, Pallin D, Sell RL, Chan MS, , 1999. The cost effectiveness of strategies for the treatment of intestinal parasites in immigrants. N Engl J Med 340: 773779.[Crossref] [Google Scholar]
  44. Williams B, Gopi PG, Borgdorff MW, Yamada N, Dye C, , 2008. The design effect and cluster samples: optimising tuberculosis prevalence surveys. Int J Tuberc Lung Dis 12: 11101115. [Google Scholar]
  45. Jovani R, Tella JL, , 2006. Parasite prevalence and sample size: misconceptions and solutions. Trends Parasitol 22: 214218.[Crossref] [Google Scholar]
  46. Clements AC, Bosque-Oliva E, Sacko M, Landoure A, Dembele R, Traore M, Coulibaly G, Gabrielli AF, Fenwick A, Brooker S, , 2009. A comparative study of the spatial distribution of schistosomiasis in Mali in 1984–1989 and 2004–2006. PLoS Negl Trop Dis 3: e431.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 25 Nov 2009
  • Accepted : 28 Jan 2010
  • Published online : 04 Jun 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error