Volume 83, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Immunity to saliva of protects against infection as determined by co-inoculation of parasites with salivary gland homogenates (SGHs) of this vector. These results were obtained with long-term colonized female . We investigated the effect of pre-immunization with SGH of long-term colonized against infection co-inoculated with SGH of wild-caught . Our results showed that pre-exposure to SGH of long-term, colonized do not confer protection against infection with co-inoculated with SGH of wild-caught . These preliminary results strongly suggest that the effectiveness of a vector saliva-based vaccine derived from colonized sand fly populations may be affected by inconsistent immune response after natural exposure.


Article metrics loading...

Loading full text...

Full text loading...



  1. Belkaid Y, Kamhawi S, Modi G, Valenzuela J, Noben-Trauth N, Rowton E, Ribeiro J, Sacks DL, , 1998. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva pre-exposure on the long-term outcome of Leismania major infection in the mouse ear dermis. J Exp Med 188: 19411953.[Crossref]
  2. Kamhawi S, Belkaid Y, Modi G, Rowton E, Sacks D, , 2000. Protection against cutaneous leishmaniasis resulting from bites of uninfected sand flies. Science 290: 13511354.[Crossref]
  3. Valenzuela J, Belkaid Y, Garfiela MK, Mendez S, Kamhawi S, Rowton E, Sacks D, Ribeiro JMC, , 2001. Toward a defined anti-Leishmania vaccine targeting vector antigens: characterization of a protective salivary protein. J Exp Med 194: 331342.[Crossref]
  4. Handman E, , 2001. Protective saliva: a novel approach to a Leishmania vaccine. Trends Parasitol 17: 513514.[Crossref]
  5. Ben Hadj Ahmed S, Chelbi I, Kaabi B, Cherni S, Derbali M, Zhioua E, , 2010. Differences in the salivary effects of wild-caught versus colonized Phlebotomus papatasi (Diptera: Psychodidae) on the development of zoonotic cutaneous leishmaniasis in BALB/c mice. J Med Entomol 47: 7479.[Crossref]
  6. Laurenti MD, Silveira VM, Secundino NF, Corbett CE, Pimenta PP, , 2009. Saliva of laboratory-reared Lutzomyia longipalpis exacerbates Leishmania (leishmania) amazonensis infection more potently than saliva of wild-caught Lutzomyia longipalpis . Parasitol Int 58: 220226.[Crossref]
  7. Laurenti MD, da Matta VL, Pernichelli T, Secundino NF, Pinto LC, Corbett CE, Pimenta PP, , 2009. Effects of saliva gland homogenate from wild-caught and laboratory-reared Lutzomyia longipalpis on the evolution and immunomodulation of Leishmania (leishmania) amazonensis infection. Scand J Immunol 70: 389395.[Crossref]
  8. Chelbi I, Zhioua E, , 2007. Biology of Phlebotomus papatasi (Diptera: Psychodidae) in the laboratory. J Med Entomol 44: 597600.[Crossref]
  9. Chelbi I, Derbali M, AL-Ahmadi Z, Zaafouri B, El Fahem A, Zhioua E, , 2007. Phenology of Phlebotomus papatasi (Diptera: Psychodidae) relative to the seasonal prevalence of zoonotic cutaneous leishmaniasis in central Tunisia. J Med Entomol 44: 385388.[Crossref]
  10. Laird NM, Ware JH, , 1982. Random-effect models for longitudinal data. Biometrics 38: 963974.[Crossref]
  11. Bauer DF, , 1972. Constructing confidence sets using rank statistics. J Am Stat Assoc 67: 687690.[Crossref]
  12. Holm S, , 1979. A simple sequentially rejective multiple test procedure. Scand J Stat 6: 6570.
  13. Elnaiem DEA, Menesses C, Slotman M, Lanzaro GC, , 2005. Genetic variation in the sand fly salivary protein, SP-15, a potential vaccine candidate against Leishmania major . Insect Mol Biol 14: 145150.[Crossref]
  14. Lanzaro GC, Lopes AHCS, Riberiro JMC, Shoemaker CB, Warburg A, Soares M, Titus RG, , 1999. Variation in the salivary peptide, maxadilan from species in the Lutzomyia longipalpis complex. Insect Mol Biol 8: 267275.[Crossref]
  15. Milleron RS, Mutebi JP, Valle S, Montoya A, Yin H, Soong L, Lanzaro GC, , 2004. Antigenic diversity in maxadilan, a salivary protein from the sand fly vector of American visceral leishmaniasis. Am J Trop Med 70: 278293.
  16. Morris RV, Shoemaker CB, David JR, Lanzaro GC, Titus R, , 2001. Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J Immunol 167: 52265230.[Crossref]
  17. Oliveira F, Lawyer PG, Kamhawi S, Valenzuela JG, , 2008. Immunity to distinct sand fly salivary proteins primes the anti-Leishmania immune response towards protection or exacerbation of disease. PLOS Neg Trop Dis 2: e226.[Crossref]
  18. Gomes R, Teixeira C, Teixeira MJ, Olivera F, Menezes MJ, Silva C, Miranda JC, Kamhawi S, Valenzuela J, Brodskyn CI, , 2008. Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model. Proc Natl Acad Sci USA 105: 78457850.[Crossref]
  19. Lorenz L, Beaty BJ, Aitken THG, Wallis GP, Tabachnik WJ, , 1984. The effect of colonization upon Aedes aegypti susceptibility to oral infection with yellow fever virus. Am J Trop Med Hyg 33: 690694.
  20. Kassem HA, Fryauff DJ, Shehata MG, Sawaf BM, , 1993. Enzyme polymorphism and genetic variability of one colonized and several field populations of Phlebotomus papatasi (Diptera: Psychodidae). J Med Entomol 30: 407413.[Crossref]
  21. Mukhopadhyay J, Rangel E, Ghosh K, Munstermann LE, , 1997. Patterns of genetic variability in colonized strains of Lutzomyia longipalpis (Diptera: Psychodidae) and its consequences. Am J Trop Med Hyg 57: 216221.
  22. Lanzaro GC, Warburg A, , 1995. Genetic variability in phlebotomine sand flies: possible implication for leishmaniasis epidemiology. Parasitol Today 4: 151154.[Crossref]

Data & Media loading...

  • Received : 17 Nov 2009
  • Accepted : 23 Apr 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error