Volume 83, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



For the fight against malaria, the World Health Organization (WHO) has emphasized the need for indicators to evaluate the efficacy of vector-control strategies. This study investigates a potential immunological marker, based on human antibody responses to saliva, as a new indicator to evaluate the efficacy of insecticide-treated nets (ITNs). Parasitological, entomological, and immunological assessments were carried out in children and adults from a malaria-endemic region of Angola before and after the introduction of ITNs. Immunoglobulin G (IgG) levels to saliva were positively associated with the intensity of exposure and malaria infection. A significant decrease in the anti-saliva IgG response was observed after the introduction of ITNs, and this was associated with a drop in parasite load. This study represents the first stage in the development of a new indicator to evaluate the efficacy of malaria vector-control strategies, which could apply in other arthropod vector-borne diseases.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. WHO-UNICEF, 2005. World Malaria Report 2005. Available at: www.rollbackmalaria.org. Accessed July 2009. [Google Scholar]
  2. Lengeler C, , 2004. Insecticide-treated nets for malaria control: real gains. Bull World Health Organ 82: 8591. [Google Scholar]
  3. Hemingway J, Bates I, , 2003. Malaria: past problems and future prospects. After more than a decade of neglect, malaria is finally back on the agenda for both biomedical research and public health politics. EMBO Rep 4: S29S31.[Crossref] [Google Scholar]
  4. Maxwell CA, Msuya E, Sudi M, Njunwa KJ, Carneiro IA, Curtis CF, , 2002. Effect of community-wide use of insecticide-treated nets for 3–4 years on malarial morbidity in Tanzania. Trop Med Int Health 7: 10031008.[Crossref] [Google Scholar]
  5. Hawley WA, Phillips-Howard PA, ter Kuile FO, Terlouw DJ, Vulule JM, Ombok M, Nahlen BL, Gimnig JE, Kariuki SK, Kolczak MS, Hightower AW, , 2003. Community-wide effects of permethrin-treated bed nets on child mortality and malaria morbidity in western Kenya. Am J Trop Med Hyg 68: 121127. [Google Scholar]
  6. Carnevale P, Robert V, Snow R, Curtis C, Richard A, Boudin C, Pazart LH, Halna JM, Mouchet J, , 1991. The impact of impregnated mosquito nets on prevalence and morbidity related to malaria in sub-Saharan Africa. Ann Soc Belg Med Trop 71 (Suppl 1): 127150. [Google Scholar]
  7. Carnevale P, Robert V, Boudin C, Halna JM, Pazart L, Gazin P, Richard A, Mouchet J, , 1988. Control of malaria using mosquito nets impregnated with pyrethroids in Burkina Faso. Bull Soc Pathol Exot 81: 832846. [Google Scholar]
  8. Nevill CG, Some ES, Mung¢ala VO, Mutemi W, New L, Marsh K, Lengeler C, Snow RW, , 1996. Insecticide-treated bednets reduce mortality and severe morbidity from malaria among children on the Kenyan coast. Trop Med Int Health 1: 139146.[Crossref] [Google Scholar]
  9. Killeen GF, Smith TA, Ferguson HM, Mshinda H, Abdulla S, Lengeler C, Kachur SP, , 2007. Preventing childhood malaria in Africa by protecting adults from mosquitoes with insecticide-treated nets. PLoS Med 4: e229.[Crossref] [Google Scholar]
  10. Binka FN, Kubaje A, Adjuik M, Williams LA, Lengeler C, Maude GH, Armah GE, Kajihara B, Adiamah JH, Smith PG, , 1996. Impact of permethrin impregnated bednets on child mortality in Kassena-Nankana district, Ghana: a randomized controlled trial. Trop Med Int Health 1: 147154.[Crossref] [Google Scholar]
  11. Binka FN, Indome F, Smith T, , 1998. Impact of spatial distribution of permethrin-impregnated bed nets on child mortality in rural northern Ghana. Am J Trop Med Hyg 59: 8085. [Google Scholar]
  12. Lengeler C, , 2004. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst Rev 2, Art. No.: CD000363. Available at: www.cochrane.org/reviews/…/ab000363.html. Accessed July 2009. [Google Scholar]
  13. Chouaibou M, Simard F, Chandre F, Etang J, Darriet F, Hougard JM, , 2006. Efficacy of bifenthrin-impregnated bednets against Anopheles funestus and pyrethroid-resistant Anopheles gambiae in north Cameroon. Malar J 5: 77.[Crossref] [Google Scholar]
  14. Smith T, Killeen G, Lengeler C, Tanner M, , 2004. Relationships between the outcome of Plasmodium falciparum infection and the intensity of transmission in Africa. Am J Trop Med Hyg 71: 8086. [Google Scholar]
  15. Noor AM, Moloney G, Borle M, Fegan GW, Shewchuk T, Snow RW, , 2008. The use of mosquito nets and the prevalence of Plasmodium falciparum infection in rural South Central Somalia. PLoS One 3: e2081.[Crossref] [Google Scholar]
  16. Schwartz BS, Ribeiro JM, Goldstein MD, , 1990. Anti-tick antibodies: an epidemiologic tool in Lyme disease research. Am J Epidemiol 132: 5866.[Crossref] [Google Scholar]
  17. Ribeiro JM, Makoul GT, Levine J, Robinson DR, Spielman A, , 1985. Antihemostatic, antiinflammatory, and immunosuppressive properties of the saliva of a tick, Ixodes dammini . J Exp Med 161: 332344.[Crossref] [Google Scholar]
  18. Ribeiro JM, Francischetti IM, , 2003. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 48: 7388.[Crossref] [Google Scholar]
  19. Nascimento RJ, Santana JM, Lozzi SP, Araujo CN, Teixeira AR, , 2001. Human IgG1 and IgG4: the main antibodies against Triatoma infestans (Hemiptera: Reduviidae) salivary gland proteins. Am J Trop Med Hyg 65: 219226. [Google Scholar]
  20. Lane RS, Moss RB, Hsu YP, Wei T, Mesirow ML, Kuo MM, , 1999. Anti-arthropod saliva antibodies among residents of a community at high risk for Lyme disease in California. Am J Trop Med Hyg 61: 850859. [Google Scholar]
  21. Rohousova I, Ozensoy S, Ozbel Y, Volf P, , 2005. Detection of species-specific antibody response of humans and mice bitten by sand flies. Parasitology 130: 493499.[Crossref] [Google Scholar]
  22. Barral A, Honda E, Caldas A, Costa J, Vinhas V, Rowton ED, Valenzuela JG, Charlab R, Barral-Netto M, Ribeiro JM, , 2000. Human immune response to sand fly salivary gland antigens: a useful epidemiological marker? Am J Trop Med Hyg 62: 740745. [Google Scholar]
  23. Poinsignon A, Remoue F, Rossignol M, Cornelie S, Courtin D, Grebaut P, Garcia A, Simondon F, , 2008. Human IgG antibody response to Glossina saliva: an epidemiologic marker of exposure to Glossina bites. Am J Trop Med Hyg 78: 750753. [Google Scholar]
  24. Reunala T, Brummer-Korvenkontio H, Palosuo K, Miyanij M, Ruiz-Maldonado R, Love A, Francois G, Palosuo T, , 1994. Frequent occurrence of IgE and IgG4 antibodies against saliva of Aedes communis and Aedes aegypti mosquitoes in children. Int Arch Allergy Immunol 104: 366371.[Crossref] [Google Scholar]
  25. Remoue F, Alix E, Cornelie S, Sokhna C, Cisse B, Doucoure S, Mouchet F, Boulanger D, Simondon F, , 2007. IgE and IgG4 antibody responses to Aedes saliva in African children. Acta Trop 104: 108115.[Crossref] [Google Scholar]
  26. Peng Z, Rasic N, Liu Y, Simons FE, , 2002. Mosquito saliva-specific IgE and IgG antibodies in 1059 blood donors. J Allergy Clin Immunol 110: 816817.[Crossref] [Google Scholar]
  27. Das MK, Mishra A, Beuria MK, Dash AP, , 1991. Human natural antibodies to Culex quinquefasciatus: age-dependent occurrence. J Am Mosq Control Assoc 7: 319321. [Google Scholar]
  28. Remoue F, Cisse B, Ba F, Sokhna C, Herve JP, Boulanger D, Simondon F, , 2006. Evaluation of the antibody response to Anopheles salivary antigens as a potential marker of risk of malaria. Trans R Soc Trop Med Hyg 100: 363370.[Crossref] [Google Scholar]
  29. Cuamba N, Choi KS, Townson H, , 2006. Malaria vectors in Angola: distribution of species and molecular forms of the Anopheles gambiae complex, their pyrethroid insecticide knockdown resistance (kdr) status and Plasmodium falciparum sporozoite rates. Malar J 5: 2.[Crossref] [Google Scholar]
  30. Calzetta M, Santolamazza F, Carrara GC, Cani PJ, Fortes F, Di Deco MA, della Torre A, Petrarca V, , 2008. Distribution and chromosomal characterization of the Anopheles gambiae complex in Angola. Am J Trop Med Hyg 78: 169175. [Google Scholar]
  31. Waitayakul A, Somsri S, Sattabongkot J, Looareesuwan S, Cui L, Udomsangpetch R, , 2006. Natural human humoral response to salivary gland proteins of Anopheles mosquitoes in Thailand. Acta Trop 98: 6673.[Crossref] [Google Scholar]
  32. Noor AM, Mutheu JJ, Tatem AJ, Hay SI, Snow RW, , 2009. Insecticide-treated net coverage in Africa: mapping progress in 2000-07. Lancet 373: 5867.[Crossref] [Google Scholar]
  33. Poinsignon A, Cornelie S, Mestres-Simon M, Lanfrancotti A, Rossignol M, Boulanger D, Cisse B, Sokhna C, Arca B, Simondon F, Remoue F, , 2008. Novel peptide marker corresponding to salivary protein gSG6 potentially identifies exposure to Anopheles bites. PLoS One 3: e2472.[Crossref] [Google Scholar]
  34. Darriet F, Guillet P, N¢Guessan R, Doannio JM, Koffi A, Konan LY, Carnevale P, , 1998. Impact of resistance of Anopheles gambiae s.s. to permethrin and deltamethrin on the efficacy of impregnated mosquito nets. Med Trop 58: 349354. [Google Scholar]
  35. Mboera LE, Kihonda J, Braks MA, Knols BG, , 1998. Short report: influence of centers for disease control light trap position, relative to a human-baited bed net, on catches of Anopheles gambiae and Culex quinquefasciatus in Tanzania. Am J Trop Med Hyg 59: 595596. [Google Scholar]
  36. Mbogo CN, Glass GE, Forster D, Kabiru EW, Githure JI, Ouma JH, Beier JC, , 1993. Evaluation of light traps for sampling anopheline mosquitoes in Kilifi, Kenya. J Am Mosq Control Assoc 9: 260263. [Google Scholar]
  37. Chandre F, Manguin S, Brengues C, Dossou Yovo J, Darriet F, Diabate A, Carnevale P, Guillet P, , 1999. Current distribution of a pyrethroid resistance gene (kdr) in Anopheles gambiae complex from West Africa and further evidence for reproductive isolation of the Mopti form. Parassitologia 41: 319322. [Google Scholar]
  38. N¢Guessan R, Corbel V, Akogbeto M, Rowland M, , 2007. Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis 13: 199206.[Crossref] [Google Scholar]
  39. Mbogo CN, Baya NM, Ofulla AV, Githure JI, Snow RW, , 1996. The impact of permethrin-impregnated bednets on malaria vectors of the Kenyan coast. Med Vet Entomol 10: 251259.[Crossref] [Google Scholar]
  40. Poinsignon A, Cornelie S, Remoue F, Grebaut P, Courtin D, Garcia A, Simondon F, , 2007. Human/vector relationships during human African trypanosomiasis: initial screening of immunogenic salivary proteins of Glossina species. Am J Trop Med Hyg 76: 327333. [Google Scholar]
  41. Cornelie S, Remoue F, Doucoure S, Ndiaye T, Sauvage FX, Boulanger D, Simondon F, , 2007. An insight into immunogenic salivary proteins of Anopheles gambiae in African children. Malar J 6: 75.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 13 Nov 2009
  • Accepted : 08 Jan 2010
  • Published online : 06 Jul 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error