1921
Volume 83, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

For the fight against malaria, the World Health Organization (WHO) has emphasized the need for indicators to evaluate the efficacy of vector-control strategies. This study investigates a potential immunological marker, based on human antibody responses to saliva, as a new indicator to evaluate the efficacy of insecticide-treated nets (ITNs). Parasitological, entomological, and immunological assessments were carried out in children and adults from a malaria-endemic region of Angola before and after the introduction of ITNs. Immunoglobulin G (IgG) levels to saliva were positively associated with the intensity of exposure and malaria infection. A significant decrease in the anti-saliva IgG response was observed after the introduction of ITNs, and this was associated with a drop in parasite load. This study represents the first stage in the development of a new indicator to evaluate the efficacy of malaria vector-control strategies, which could apply in other arthropod vector-borne diseases.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2010.09-0684
2010-07-06
2020-07-02
Loading full text...

Full text loading...

/deliver/fulltext/14761645/83/1/115.html?itemId=/content/journals/10.4269/ajtmh.2010.09-0684&mimeType=html&fmt=ahah

References

  1. WHO-UNICEF, 2005. World Malaria Report 2005. Available at: www.rollbackmalaria.org. Accessed July 2009.
    [Google Scholar]
  2. Lengeler C, 2004. Insecticide-treated nets for malaria control: real gains. Bull World Health Organ 82: 8591.
    [Google Scholar]
  3. Hemingway J, Bates I, 2003. Malaria: past problems and future prospects. After more than a decade of neglect, malaria is finally back on the agenda for both biomedical research and public health politics. EMBO Rep 4: S29S31.[Crossref]
    [Google Scholar]
  4. Maxwell CA, Msuya E, Sudi M, Njunwa KJ, Carneiro IA, Curtis CF, 2002. Effect of community-wide use of insecticide-treated nets for 3–4 years on malarial morbidity in Tanzania. Trop Med Int Health 7: 10031008.[Crossref]
    [Google Scholar]
  5. Hawley WA, Phillips-Howard PA, ter Kuile FO, Terlouw DJ, Vulule JM, Ombok M, Nahlen BL, Gimnig JE, Kariuki SK, Kolczak MS, Hightower AW, 2003. Community-wide effects of permethrin-treated bed nets on child mortality and malaria morbidity in western Kenya. Am J Trop Med Hyg 68: 121127.
    [Google Scholar]
  6. Carnevale P, Robert V, Snow R, Curtis C, Richard A, Boudin C, Pazart LH, Halna JM, Mouchet J, 1991. The impact of impregnated mosquito nets on prevalence and morbidity related to malaria in sub-Saharan Africa. Ann Soc Belg Med Trop 71 (Suppl 1): 127150.
    [Google Scholar]
  7. Carnevale P, Robert V, Boudin C, Halna JM, Pazart L, Gazin P, Richard A, Mouchet J, 1988. Control of malaria using mosquito nets impregnated with pyrethroids in Burkina Faso. Bull Soc Pathol Exot 81: 832846.
    [Google Scholar]
  8. Nevill CG, Some ES, Mung¢ala VO, Mutemi W, New L, Marsh K, Lengeler C, Snow RW, 1996. Insecticide-treated bednets reduce mortality and severe morbidity from malaria among children on the Kenyan coast. Trop Med Int Health 1: 139146.[Crossref]
    [Google Scholar]
  9. Killeen GF, Smith TA, Ferguson HM, Mshinda H, Abdulla S, Lengeler C, Kachur SP, 2007. Preventing childhood malaria in Africa by protecting adults from mosquitoes with insecticide-treated nets. PLoS Med 4: e229.[Crossref]
    [Google Scholar]
  10. Binka FN, Kubaje A, Adjuik M, Williams LA, Lengeler C, Maude GH, Armah GE, Kajihara B, Adiamah JH, Smith PG, 1996. Impact of permethrin impregnated bednets on child mortality in Kassena-Nankana district, Ghana: a randomized controlled trial. Trop Med Int Health 1: 147154.[Crossref]
    [Google Scholar]
  11. Binka FN, Indome F, Smith T, 1998. Impact of spatial distribution of permethrin-impregnated bed nets on child mortality in rural northern Ghana. Am J Trop Med Hyg 59: 8085.
    [Google Scholar]
  12. Lengeler C, 2004. Insecticide-treated bed nets and curtains for preventing malaria. Cochrane Database Syst Rev 2, Art. No.: CD000363. Available at: www.cochrane.org/reviews/…/ab000363.html. Accessed July 2009.
    [Google Scholar]
  13. Chouaibou M, Simard F, Chandre F, Etang J, Darriet F, Hougard JM, 2006. Efficacy of bifenthrin-impregnated bednets against Anopheles funestus and pyrethroid-resistant Anopheles gambiae in north Cameroon. Malar J 5: 77.[Crossref]
    [Google Scholar]
  14. Smith T, Killeen G, Lengeler C, Tanner M, 2004. Relationships between the outcome of Plasmodium falciparum infection and the intensity of transmission in Africa. Am J Trop Med Hyg 71: 8086.
    [Google Scholar]
  15. Noor AM, Moloney G, Borle M, Fegan GW, Shewchuk T, Snow RW, 2008. The use of mosquito nets and the prevalence of Plasmodium falciparum infection in rural South Central Somalia. PLoS One 3: e2081.[Crossref]
    [Google Scholar]
  16. Schwartz BS, Ribeiro JM, Goldstein MD, 1990. Anti-tick antibodies: an epidemiologic tool in Lyme disease research. Am J Epidemiol 132: 5866.[Crossref]
    [Google Scholar]
  17. Ribeiro JM, Makoul GT, Levine J, Robinson DR, Spielman A, 1985. Antihemostatic, antiinflammatory, and immunosuppressive properties of the saliva of a tick, Ixodes dammini . J Exp Med 161: 332344.[Crossref]
    [Google Scholar]
  18. Ribeiro JM, Francischetti IM, 2003. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 48: 7388.[Crossref]
    [Google Scholar]
  19. Nascimento RJ, Santana JM, Lozzi SP, Araujo CN, Teixeira AR, 2001. Human IgG1 and IgG4: the main antibodies against Triatoma infestans (Hemiptera: Reduviidae) salivary gland proteins. Am J Trop Med Hyg 65: 219226.
    [Google Scholar]
  20. Lane RS, Moss RB, Hsu YP, Wei T, Mesirow ML, Kuo MM, 1999. Anti-arthropod saliva antibodies among residents of a community at high risk for Lyme disease in California. Am J Trop Med Hyg 61: 850859.
    [Google Scholar]
  21. Rohousova I, Ozensoy S, Ozbel Y, Volf P, 2005. Detection of species-specific antibody response of humans and mice bitten by sand flies. Parasitology 130: 493499.[Crossref]
    [Google Scholar]
  22. Barral A, Honda E, Caldas A, Costa J, Vinhas V, Rowton ED, Valenzuela JG, Charlab R, Barral-Netto M, Ribeiro JM, 2000. Human immune response to sand fly salivary gland antigens: a useful epidemiological marker? Am J Trop Med Hyg 62: 740745.
    [Google Scholar]
  23. Poinsignon A, Remoue F, Rossignol M, Cornelie S, Courtin D, Grebaut P, Garcia A, Simondon F, 2008. Human IgG antibody response to Glossina saliva: an epidemiologic marker of exposure to Glossina bites. Am J Trop Med Hyg 78: 750753.
    [Google Scholar]
  24. Reunala T, Brummer-Korvenkontio H, Palosuo K, Miyanij M, Ruiz-Maldonado R, Love A, Francois G, Palosuo T, 1994. Frequent occurrence of IgE and IgG4 antibodies against saliva of Aedes communis and Aedes aegypti mosquitoes in children. Int Arch Allergy Immunol 104: 366371.[Crossref]
    [Google Scholar]
  25. Remoue F, Alix E, Cornelie S, Sokhna C, Cisse B, Doucoure S, Mouchet F, Boulanger D, Simondon F, 2007. IgE and IgG4 antibody responses to Aedes saliva in African children. Acta Trop 104: 108115.[Crossref]
    [Google Scholar]
  26. Peng Z, Rasic N, Liu Y, Simons FE, 2002. Mosquito saliva-specific IgE and IgG antibodies in 1059 blood donors. J Allergy Clin Immunol 110: 816817.[Crossref]
    [Google Scholar]
  27. Das MK, Mishra A, Beuria MK, Dash AP, 1991. Human natural antibodies to Culex quinquefasciatus: age-dependent occurrence. J Am Mosq Control Assoc 7: 319321.
    [Google Scholar]
  28. Remoue F, Cisse B, Ba F, Sokhna C, Herve JP, Boulanger D, Simondon F, 2006. Evaluation of the antibody response to Anopheles salivary antigens as a potential marker of risk of malaria. Trans R Soc Trop Med Hyg 100: 363370.[Crossref]
    [Google Scholar]
  29. Cuamba N, Choi KS, Townson H, 2006. Malaria vectors in Angola: distribution of species and molecular forms of the Anopheles gambiae complex, their pyrethroid insecticide knockdown resistance (kdr) status and Plasmodium falciparum sporozoite rates. Malar J 5: 2.[Crossref]
    [Google Scholar]
  30. Calzetta M, Santolamazza F, Carrara GC, Cani PJ, Fortes F, Di Deco MA, della Torre A, Petrarca V, 2008. Distribution and chromosomal characterization of the Anopheles gambiae complex in Angola. Am J Trop Med Hyg 78: 169175.
    [Google Scholar]
  31. Waitayakul A, Somsri S, Sattabongkot J, Looareesuwan S, Cui L, Udomsangpetch R, 2006. Natural human humoral response to salivary gland proteins of Anopheles mosquitoes in Thailand. Acta Trop 98: 6673.[Crossref]
    [Google Scholar]
  32. Noor AM, Mutheu JJ, Tatem AJ, Hay SI, Snow RW, 2009. Insecticide-treated net coverage in Africa: mapping progress in 2000-07. Lancet 373: 5867.[Crossref]
    [Google Scholar]
  33. Poinsignon A, Cornelie S, Mestres-Simon M, Lanfrancotti A, Rossignol M, Boulanger D, Cisse B, Sokhna C, Arca B, Simondon F, Remoue F, 2008. Novel peptide marker corresponding to salivary protein gSG6 potentially identifies exposure to Anopheles bites. PLoS One 3: e2472.[Crossref]
    [Google Scholar]
  34. Darriet F, Guillet P, N¢Guessan R, Doannio JM, Koffi A, Konan LY, Carnevale P, 1998. Impact of resistance of Anopheles gambiae s.s. to permethrin and deltamethrin on the efficacy of impregnated mosquito nets. Med Trop 58: 349354.
    [Google Scholar]
  35. Mboera LE, Kihonda J, Braks MA, Knols BG, 1998. Short report: influence of centers for disease control light trap position, relative to a human-baited bed net, on catches of Anopheles gambiae and Culex quinquefasciatus in Tanzania. Am J Trop Med Hyg 59: 595596.
    [Google Scholar]
  36. Mbogo CN, Glass GE, Forster D, Kabiru EW, Githure JI, Ouma JH, Beier JC, 1993. Evaluation of light traps for sampling anopheline mosquitoes in Kilifi, Kenya. J Am Mosq Control Assoc 9: 260263.
    [Google Scholar]
  37. Chandre F, Manguin S, Brengues C, Dossou Yovo J, Darriet F, Diabate A, Carnevale P, Guillet P, 1999. Current distribution of a pyrethroid resistance gene (kdr) in Anopheles gambiae complex from West Africa and further evidence for reproductive isolation of the Mopti form. Parassitologia 41: 319322.
    [Google Scholar]
  38. N¢Guessan R, Corbel V, Akogbeto M, Rowland M, 2007. Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis 13: 199206.[Crossref]
    [Google Scholar]
  39. Mbogo CN, Baya NM, Ofulla AV, Githure JI, Snow RW, 1996. The impact of permethrin-impregnated bednets on malaria vectors of the Kenyan coast. Med Vet Entomol 10: 251259.[Crossref]
    [Google Scholar]
  40. Poinsignon A, Cornelie S, Remoue F, Grebaut P, Courtin D, Garcia A, Simondon F, 2007. Human/vector relationships during human African trypanosomiasis: initial screening of immunogenic salivary proteins of Glossina species. Am J Trop Med Hyg 76: 327333.
    [Google Scholar]
  41. Cornelie S, Remoue F, Doucoure S, Ndiaye T, Sauvage FX, Boulanger D, Simondon F, 2007. An insight into immunogenic salivary proteins of Anopheles gambiae in African children. Malar J 6: 75.[Crossref]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2010.09-0684
Loading
/content/journals/10.4269/ajtmh.2010.09-0684
Loading

Data & Media loading...

  • Received : 13 Nov 2009
  • Accepted : 08 Jan 2010
  • Published online : 06 Jul 2010
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error