Volume 82, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Viral hemorrhagic fever is caused by a diverse group of single-stranded, negative-sense or positive-sense RNA viruses belonging to the families (Ebola and Marburg), (Lassa, Junin, Machupo, Sabia, and Guanarito), and (hantavirus). Disease characteristics in these families mark each with the potential to be used as a biological threat agent. Because other diseases have similar clinical symptoms, specific laboratory diagnostic tests are necessary to provide the differential diagnosis during outbreaks and for instituting acceptable quarantine procedures. We designed 48 TaqMan™-based polymerase chain reaction (PCR) assays for specific and absolute quantitative detection of multiple hemorrhagic fever viruses. Forty-six assays were determined to be virus-specific, and two were designated as pan assays for Marburg virus. The limit of detection for the assays ranged from 10 to 0.001 plaque-forming units (PFU)/PCR. Although these real-time hemorrhagic fever virus assays are qualitative (presence of target), they are also quantitative (measure a single DNA/RNA target sequence in an unknown sample and express the final results as an absolute value (e.g., viral load, PFUs, or copies/mL) on the basis of concentration of standard samples and can be used in viral load, vaccine, and antiviral drug studies.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Groseth A, Jones S, Artsob H, Feldmann H, Fong I, Alibek K, , 2005. Hemorrhagic fever viruses as biological weapons. , eds. Bioterrorism and Infectious Agents: A New Dilemma for the 21st Century. New York: Springer Publishing, 169191.[Crossref] [Google Scholar]
  2. Borio L, Inglesby T, Peters CJ, Schmaljohn AL, Hughes JM, Jahrling PB, Ksiazek T, Johnson KM, Meyerhoff A, O'Toole T, Ascher MS, Bartlett J, Breman JG, Eitzen EM, Jr. Hamburg M, Hauer J, Henderson DA, Johnson RT, Kwik G, Layton M, Lillibridge S, Nabel GJ, Osterholm MT, Perl TM, Russell P, , Tonat K for the Working Group on Civilian Biodefense, 2002. Hemorrhagic fever viruses as biological weapons: medical and public health management. JAMA 287: 23912405.[Crossref] [Google Scholar]
  3. Gibb TR, Norwood DA, Jr Woollen N, Henchal EA, , 2001. Development and evaluation of a fluorogenic 5′ nuclease assay to detect and differentiate between Ebola virus subtypes Zaire and Sudan. J Clin Microbiol 39: 41254130.[Crossref] [Google Scholar]
  4. Weidmann M, Muhlberger E, Hufert FT, , 2004. Rapid detection protocol for filoviruses. J Clin Virol 30: 9499.[Crossref] [Google Scholar]
  5. Sanchez A, Lukwiya M, Bausch D, Mahanty S, Sanchez AJ, Wagoner KD, Rollin PE, , 2004. Analysis of human peripheral blood samples from fatal and nonfatal cases of Ebola (Sudan) hemorrhagic fever: cellular responses, virus load, and nitric oxide levels. J Virol 78: 1037010377.[Crossref] [Google Scholar]
  6. Towner JS, Sealy TK, Khristova ML, Albarino CG, Conlan S, Reeder SA, Quan PL, Lipkin WI, Downing R, Tappero JW, Okware S, Lutwama J, Bakamutumaho B, Kayiwa J, Comer JA, Rollin PE, Ksiazek TG, Nichol ST, , 2008. Newly discovered ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog 4: e1000212.[Crossref] [Google Scholar]
  7. Towner JS, Rollin PE, Bausch DG, Sanchez A, Crary SM, Vincent M, Lee WF, Spiropoulou CF, Ksiazek TG, Lukwiya M, Kaducu F, Downing R, Nichol ST, , 2004. Rapid diagnosis of Ebola hemorrhagic fever by reverse transcription-PCR in an outbreak setting and assessment of patient viral load as a predictor of outcome. J Virol 78: 43304341.[Crossref] [Google Scholar]
  8. Drosten C, Gottig S, Schilling S, Asper M, Panning M, Schmitz H, Gunther S, , 2002. Rapid detection and quantification of RNA of Ebola and Marburg viruses, Lassa virus, Crimean–Congo hemorrhagic fever virus, Rift valley fever virus, dengue virus, and yellow fever virus by real-time reverse transcription-PCR. J Clin Microbiol 40: 23232330.[Crossref] [Google Scholar]
  9. Gibb TR, Norwood DA, Jr Woollen N, Henchal EA, , 2001. Development and evaluation of a fluorogenic 5′-nuclease assay to identify Marburg virus. Mol Cell Probes 15: 259266.[Crossref] [Google Scholar]
  10. Trappier SG, Conaty AL, Farrar BB, Auperin DD, McCormick JB, Fisher-Hoch SP, , 1993. Evaluation of the polymerase chain reaction for diagnosis of Lassa virus infection. Am J Trop Med Hyg 49: 214221. [Google Scholar]
  11. Demby AH, Chamberlain J, Brown DW, Clegg CS, , 1994. Early diagnosis of Lassa fever by reverse transcription-PCR. J Clin Microbiol 32: 28982903. [Google Scholar]
  12. Lunkenheimer K, Hufert FT, Schmitz H, , 1990. Detection of Lassa virus RNA in specimens from patients with Lassa fever by using the polymerase chain reaction. J Clin Microbiol 28: 26892692. [Google Scholar]
  13. Lozano ME, Enria D, Maiztegui JI, Grau O, Romanowski V, , 1995. Rapid diagnosis of Argentine hemorrhagic fever by reverse transcriptase PCR-based assay. J Clin Microbiol 33: 13271332. [Google Scholar]
  14. Garin D, Peyrefitte C, Crance JM, Le FA, Jouan A, Bouloy M, , 2001. Highly sensitive Taqman PCR detection of Puumala hantavirus. Microbes Infect 3: 739745.[Crossref] [Google Scholar]
  15. Weidmann M, Rudaz V, Nunes MR, Vasconcelos PF, Hufert FT, , 2003. Rapid detection of human pathogenic orthobunyaviruses. J Clin Microbiol 41: 32993305.[Crossref] [Google Scholar]
  16. Botten J, Mirowsky K, Kusewitt D, Ye C, Gottlieb K, Prescott J, Hjelle B, , 2003. Persistent Sin Nombre virus infection in the deer mouse (Peromyscus maniculatus) model: sites of replication and strand-specific expression. J Virol 77: 15401550.[Crossref] [Google Scholar]
  17. Evander M, Eriksson I, Pettersson L, Juto P, Ahlm C, Olsson GE, Bucht G, Allard A, , 2007. Puumala hantavirus viremia diagnosed by real-time reverse transcriptase PCR using samples from patients with hemorrhagic fever and renal syndrome. J Clin Microbiol 45: 24912497.[Crossref] [Google Scholar]
  18. Aitichou M, Saleh SS, McElroy AK, Schmaljohn C, Ibrahim MS, , 2005. Identification of Dobrava, Hantaan, Seoul, and Puumala viruses by one-step real-time RT-PCR. J Virol Methods 124: 2126.[Crossref] [Google Scholar]
  19. Coyne SR, Trombley A, Craw PD, Kulesh DA, Norwood DA, , 2008. Extraction of RNA from virus samples in TRIzol using manual and automated magnetic bead systems. American Society for Microbiology Biodefense and Emerging Diseases Research Meeting. Abstract 178 (B): 6061. [Google Scholar]
  20. Christensen DR, Hartman LJ, Loveless BM, Frye MS, Shipley MA, Bridge DL, Richards MJ, Kaplan RS, Garrison J, Baldwin CD, Kulesh DA, Norwood DA, , 2006. Detection of biological threat agents by real-time PCR: comparison of assay performance on the R.A.P.I.D., the LightCycler, and the Smart Cycler platforms. Clin Chem 52: 141145.[Crossref] [Google Scholar]
  21. McCormick JB, Webb PA, Krebs JW, Johnson KM, Smith ES, , 1987. A prospective study of the epidemiology and ecology of Lassa fever. J Infect Dis 155: 437444.[Crossref] [Google Scholar]
  22. Khan SH, Goba A, Chu M, Roth C, Healing T, Marx A, Fair J, Guttieri MC, Ferro P, Imes T, Monagin C, Garry RF, Bausch DG, , 2008. New opportunities for field research on the pathogenesis and treatment of Lassa fever. Antiviral Res 78: 103115.[Crossref] [Google Scholar]
  23. Bausch DG, Demby AH, Coulibaly M, Kanu J, Goba A, Bah A, Conde N, Wurtzel HL, Cavallaro KF, Lloyd E, Baldet FB, Cisse SD, Fofona D, Savane IK, Tolno RT, Mahy B, Wagoner KD, Ksiazek TG, Peters CJ, Rollin PE, , 2001. Lassa fever in Guinea: I. Epidemiology of human disease and clinical observations. Vector Borne Zoonotic Dis 1: 269281.[Crossref] [Google Scholar]
  24. Bausch DG, Sesay SS, Oshin B, , 2004. On the front lines of Lassa fever. Emerg Infect Dis 10: 18891890.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 21 Oct 2009
  • Accepted : 22 Jan 2010
  • Published online : 05 May 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error