Volume 82, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



We examined the use of megadoses of VectoBac WG for residual control of in 2-L plastic buckets. Doses of 10×, 20×, and 50× the recommended rate of 8 mg/L provided ≥ 90% control for 8, 8, and 23 weeks, respectively. There was no significant difference in mortality between dry (neat) or aqueous mixture of VectoBac WG. Pretreatment of dry containers up to 8 weeks before flooding did not significantly decrease efficacy through 11 success weeks. Thus, megadoses of dry formulations of Bti can be used for residual control of in small containers. Furthermore, these doses use small amounts of product (0.08–0.4 g/L) that is more practical to measure than the minute amounts (0.008 g/L) required by the recommended rate, and cost US$2.18 to treat 50 Cairns yards containing an average total of 80 containers. This method could also be used to control .


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Gubler DJ, Gubler DJ, Kuno E, , 1997. Dengue and dengue hemorrhagic fever: its history and resurgence as a global health problem. , eds. Dengue and Dengue Hemorrhagic Fever. New York: CAB International.[Crossref] [Google Scholar]
  2. Ritchie SA, Long S, Smith G, Pyke A, Knox TB, , 2004. Entomological investigations in a focus of dengue transmission in Cairns, Queensland, Australia, by using the sticky ovitraps. J Med Entomol 41: 14.[Crossref] [Google Scholar]
  3. Gratz N, , 2004. Critical review of the vector status of Aedes albopictus . Med Vet Entomol 18: 215227.[Crossref] [Google Scholar]
  4. Hawley WA, , 1998. The biology of Aedes albopictus . J Am Mosq Control Assoc 4: 140. [Google Scholar]
  5. Ritchie SA, Broadsmith G, , 1997. Efficacy of Altosid pettets and granules against Aedes aegypti in ornamental bromeliads. J Am Mosq Control Assoc 13: 201202. [Google Scholar]
  6. Sihuincha M, Zamora-Perea E, Orellana-Rios W, Stancil JD, Lopez-Sifuentes V, Vidal-Ore C, Devine GJ, , 2005. Potential use of pyriproxzfen for control of Aedes aegypti (Diptera: Culicidae in Iquitos, Peru. J Med Entomol 42: 620630.[Crossref] [Google Scholar]
  7. Batra CP, Mittal PK, Adak T, Ansari MA, , 2005. Efficacy of IGR compound Starycide 480 SC (Triflumuron) against mosquito larvae in clear and polluted water. J Vector Borne Dis 42: 109116. [Google Scholar]
  8. Arredondo-Jimenez JI, Valdez-Delgado KM, , 2006. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chipas Mexico. Med Vet Entomol 20: 377387.[Crossref] [Google Scholar]
  9. Novak RJ, Gubler DJ, Underwood D, , 1985. Evaluation of slow-release formulations of temephos (Abate) and Bacillus thuringiensis var. israelensis for the control of Aedes aegypti in Puerto Rico. J Am Mosq Control Assoc 1: 449453. [Google Scholar]
  10. Ritchie SA, Montgomery B, Walsh I, Long S, Hart A, , 2001. Efficacy of an aerosol surface spray against container-breeding Aedes . J Am Mosq Control Assoc 17: 147149. [Google Scholar]
  11. Seccacini E, Lucia A, Zerba E, Licastro S, Masuh HC, , 2008. Aedes aegypti resistance to temephos in Argentina. J Am Mosq Control Assoc 24: 608609.[Crossref] [Google Scholar]
  12. Ponlawat A, Scott JG, Harrington LC, , 2009. Insecticide susceptibility of Aedes aegypti and Aedes albopictus across Thailand. J Med Entomol 42: 821825.[Crossref] [Google Scholar]
  13. Lacey LA, , 2009. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J Am Mosq Control Assoc 23: 133163.[Crossref] [Google Scholar]
  14. Mulla MS, Thavara U, Tawatsin A, Chompoosri J, , 2004. Procedures for the evaluation of fiels efficacy of slow-release formulations of larvicides against Aedes aegypti in water storage containers. J Am Mosq Control Assoc 20: 6473. [Google Scholar]
  15. Lee MH, Pe TH, Cheong WH, , 1986. Laboratory evaluation of the persistence of Bacillus thuringiensis var. israelensis against Aedes aegypti larvae. Mosquito borne Dis Bull 2: 6166. [Google Scholar]
  16. Batra CP, Mittal PK, Adak T, , 2000. Control of Aedes aegypti breeding in desert coolers and tires by use of Bacillus thuringiensis var. israelensis formulation. J Am Mosq Control Assoc 16: 321323. [Google Scholar]
  17. Armengol G, Hernandez J, Velez JG, Orduz S, , 2006. Long-lasting effects of a Bacillus thuringiensis serovar israelensis experimental tablet formulation for Aedes aegypti (Diptera: Culicidae) control. J Econ Entomol 99: 15901595.[Crossref] [Google Scholar]
  18. Setha T, Chantha N, Socheat D, , 2007. Efficacy of Bacillus thuringiensis israelensis, VectoBac WG and DT formulations against dengue mosquito vectors in cement potable water jars in Cambodia. Southeast Asian J Trop Med Public Health 38: 261268. [Google Scholar]
  19. Benjamin S, Rath A, Fook CY, Lim LH, , 2005. Efficacy of a Bacillus thuringiensis israelensis tablet formulation, Vectorbac DT, for control of dengue mosquito vectors in potable water containers. Southeast Asian J Trop Med Public Health 36: 879892. [Google Scholar]
  20. Melo-Santos MA, de Araujo AP, Rios EMM, Regis L, , 2009. Long lasting persistence of Bacillus thuringiensis servar. israelensis larvicidal activity in Aedes aegypti (Diptera: Culicidae) breeding places is associated to bacteria recycling. Biol Control 49: 186191.[Crossref] [Google Scholar]
  21. World Health Organization, 2007. WHO Specifications and Evaluations for Public Health Pesticides: Bacillus thuringiensis Subspecies israelensis Strain AM65-52. Geneva: World Health Organization. [Google Scholar]
  22. Vilarinhos PT, Monnerat R, , 2004. Larvicidal persistence of formulations of Bacillus thuringiensis var. israelensisto control larval Aedes aegypti . J Am Mosq Control Assoc 20: 311314. [Google Scholar]
  23. Lima JB, Melo NV, Valle D, , 2005. Residual effect of two Bacillus thuringiensis var. israelensis products assayed against Aedes aegypti (Diptera: Culicidae) in laboratory and outdoors at Rio de Janeiro, Brazil. Rev Inst Med Trop Sao Paulo 47: 125130.[Crossref] [Google Scholar]
  24. Lee YW, Zairi J, , 2005. Laboratory evaluation of Bacillus thuringiensis H-14 against Aedes aegypti . Trop Biomed 22: 510. [Google Scholar]
  25. Lee YW, Zairi J, , 2006. Field evaluation of Bacillus thuringiensis H-14 against Aedes aegypti . Trop Biomed 23: 3744. [Google Scholar]
  26. Clark JD, Devisetty BN, Krause SC, Novak RJ, Warrior P, , 2007. A novel method for evaluating the particle size distribution behavior of a spray-dried technical concentrate and a water-dispersable granule formulation of Bacillus thuringiensis subsp. israelensis in an aqueous column. J Am Mosq Control Assoc 23: 6065.[Crossref] [Google Scholar]
  27. Su T, Mulla MS, , 1999. Field evaluation of new water-dispersible granular formulations of Bacillus thuringiensis spp. israelensis and Bacillus sphaericus against Culex mosquitoes in microcosms. J Am Mosq Control Assoc 27: 356365. [Google Scholar]
  28. Baker-Hudson P, Jones R, Kay BH, , 1988. Categorizarion of domestic breeding habits of Aedes aegypti (Diptera: Culicidae) in Northern Queensland, Australia. J Med Entomol 25: 178182.[Crossref] [Google Scholar]
  29. Manrique-Saide P, Davies CR, Coleman PG, Rebollar-Tellez E, Che-Medoza A, Dzul-Manzanilla F, Zapata-Peniche A, , 2008. Pupal surveys for Aedes aegypti surveillance and potential targeted control in residential aresa of Merida, Mexico. J Am Mosq Control Assoc 24: 289298.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 08 Oct 2009
  • Accepted : 26 Feb 2010
  • Published online : 04 Jun 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error