Volume 82, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



West Nile virus (WNV) perpetuates in an enzootic transmission cycle involving mosquitoes and virus-competent avian hosts. In the northeastern United States, the enzootic vectors, and , feed preferentially on American robins (), suggesting a key role for this bird species in the WNV transmission cycle. We examined the role of American robin communal roosts as virus amplification foci in greater New Haven, Connecticut. Robin communal roosts were located by radio tracking. After mid-August, when most robins were using the roosts, and fed often on robins and were significantly more infected with WNV at communal roosts than at non-roosting sites. We also identified 6.4% human-derived blood meals in in communal roosts. Our results indicate that communal roosts act as late-season amplification foci facilitating transmission to humans because of high infection rates, high abundance, and feeding patterns of enzootic and bridge vectors.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Woolhouse MEJ, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP, Hagan P, Hii JLK, Ndhlovu PD, Quinnell RJ, Watts CH, Chandiwana SK, Anderson RM, , 1997. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci USA 94: 338342.[Crossref] [Google Scholar]
  2. Anderson RM, May RM, , 1991. Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press. [Google Scholar]
  3. Grenfell BT, Dobson AP, , 1995. Ecology of Infectious Diseases in Natural Populations. Cambridge: Cambridge University Press.[Crossref] [Google Scholar]
  4. Shaman J, , 2007. Amplification due to spatial clustering in an individual-based model of mosquito-avian arbovirus transmission. Trans R Soc Trop Med Hyg 101: 469483.[Crossref] [Google Scholar]
  5. Lothrop HD, Reisen WK, , 2001. Landscape affects the host-seeking patterns of Culex tarsalis (Diptera: Culicidae) in the Coachella Valley of California. J Med Entomol 38: 325332.[Crossref] [Google Scholar]
  6. Nielsen CF, Armijos MV, Wheeler S, Carpenter TE, Boyce WM, Kelley K, Brown D, Scott TW, Reisen WK, , 2008. Risk factors associated with human infection during the 2006 West Nile virus outbreak in Davis, a residential community in northern California. Am J Trop Med Hyg 78: 5362. [Google Scholar]
  7. Reisen WK, Lundstrom JO, Scott TW, Eldridge BF, Chiles RE, Cusack R, Martinez VM, Lothrop HD, Gutierrez B, Wright SE, Boyce K, Hill BR, , 2000. Patterns of avian seroprevalence to western equine encephalomyelitis and Saint Louis encephalitis viruses in California, USA. J Med Entomol 37: 507527.[Crossref] [Google Scholar]
  8. Day JF, , 2001. Predicting St. Louis encephalitis virus epidemics: lessons from recent, and not so recent, outbreaks. Annu Rev Entomol 46: 111138.[Crossref] [Google Scholar]
  9. Smith DL, Dushoff J, McKenzie FE, , 2004. The risk of a mosquito-borne infection in a heterogeneous environment. PLoS Biol 2: 19571964.[Crossref] [Google Scholar]
  10. Centers for Disease Control and Prevention, 2009. West Nile Virus: Statistics, Surveillance and Control. US Department of Health and Human Services. Available at: http://www.cdc.gov/ncidod/dvbid/westnile/surv&control.htm. Accessed November 9, 2009. [Google Scholar]
  11. Turell MJ, O’Guinn ML, Dohm DJ, Jones JW, , 2001. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. J Med Entomol 38: 130134.[Crossref] [Google Scholar]
  12. Andreadis TG, Anderson JF, Vossbrinck CR, Main AJ, , 2004. Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999–2003. Vector Borne Zoonotic Dis 4: 360378.[Crossref] [Google Scholar]
  13. Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M, , 2003. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9: 311322.[Crossref] [Google Scholar]
  14. Apperson CS, Hassan HK, Harrison BA, Savage HM, Aspen SE, Farajollahi A, Crans W, Daniels TJ, Falco RC, Benedict M, Anderson M, McMillen L, Unnasch TR, , 2004. Host feeding patterns of established and potential mosquito vectors of West Nile virus in the eastern United States. Vector Borne Zoonotic Dis 4: 7182.[Crossref] [Google Scholar]
  15. Molaei G, Andreadis TA, Armstrong PM, Anderson JF, Vossbrinck CR, , 2006. Host feeding patterns of Culex mosquitoes and West Nile virus transmission, northeastern United States. Emerg Infect Dis 12: 468474.[Crossref] [Google Scholar]
  16. Apperson CS, Harrison BA, Unnasch TR, Hassan HK, Irby WS, Savage HM, Aspen SE, Watson DW, Rueda LM, Engber BR, Nasci RS, , 2002. Host-feeding habits of Culex and other mosquitoes (Diptera: Culicidae) in the Borough of Queens in New York City, with characters and techniques for identification of Culex mosquitoes. J Med Entomol 39: 777785.[Crossref] [Google Scholar]
  17. Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, , 2006. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4: 606610.[Crossref] [Google Scholar]
  18. Savage HM, Aggarwal D, Apperson CS, Katholi CR, Gordon E, Hassan HK, Anderson M, Charnetzky D, McMillen L, Unnasch EA, Unnasch TR, , 2007. Host choice and West Nile virus infection rates in blood-fed mosquitoes, including members of the Culex pipiens complex, from Memphis and Shelby County, Tennessee, 2002–2003. Vector Borne Zoonotic Dis 7: 365386.[Crossref] [Google Scholar]
  19. Patrican LA, Hackett LE, Briggs JE, McGowan JW, Unnasch TR, Lee JH, , 2007. Host-feeding patterns of Culex mosquitoes in relation to trap habitat. Emerg Infect Dis 13: 19211923.[Crossref] [Google Scholar]
  20. Hamer GL, Kitron UD, Brawn JD, Loss SR, Ruiz MO, Goldberg TL, Walker ED, , 2008. Culex pipiens (Diptera: Culicidae): a bridge vector of West Nile virus to humans. J Med Entomol 45: 125128.[Crossref] [Google Scholar]
  21. Hamer GL, Kitron UD, Goldberg TL, Brawn JD, Loss SR, Ruiz MO, Hayes DB, Walker ED, , 2009. Host selection by Culex pipiens mosquitoes and West Nile virus amplification. Am J Trop Med Hyg 80: 268278. [Google Scholar]
  22. Caccamise DF, Fischl J, , 1985. Patterns of association of secondary species in roosts of European Starlings and Common Grackles. Wilson Bull 97: 173182. [Google Scholar]
  23. Morrison DW, Caccamise DF, , 1985. Ephemeral roosts and stable patches—a radiotelemetry study of communally roosting starlings. The Auk 102: 793804. [Google Scholar]
  24. Komar N, Dohm DJ, Turell MJ, Spielman A, , 1999. Eastern equine encephalitis virus in birds: relative competence of European starlings (Sturnus vulgaris). Am J Trop Med Hyg 60: 387391. [Google Scholar]
  25. Komar N, Spielman A, , 1994. Emergence of Eastern Encephalitis in Massachusetts. Ann NY Acad Sci 740: 157168.[Crossref] [Google Scholar]
  26. Reisen WK, Barker CM, Carney R, Lothrop HD, Wheeler SS, Wilson JL, Madon MB, Takahashi R, Carroll B, Garcia S, Fang Y, Shafii M, Kahl N, Ashtari S, Kramer V, Glaser C, Jean C, , 2006. Role of corvids in epidemiology of West Nile virus in southern California. J Med Entomol 43: 356367.[Crossref] [Google Scholar]
  27. Ward MP, Raim A, Yaremych-Hamer S, Lampman R, Novak RJ, , 2006. Does the roosting behavior of birds affect transmission dynamics of West Nile virus? Am J Trop Med Hyg 75: 350355. [Google Scholar]
  28. Yaremych SA, Novak RJ, Raim AJ, Mankin PC, Warner RE, , 2004. Home range and habitat use by American Crows in relation to transmission of West Nile Virus. Wilson Bull 116: 232239.[Crossref] [Google Scholar]
  29. Wheeler SS, Barker CM, Fang Y, Armijos MV, Carroll BD, Husted S, Johnson WO, Reisen WK, , 2009. Differential impact of West Nile virus on California birds. The Condor 111: 120.[Crossref] [Google Scholar]
  30. Kent R, Juliusson L, Weissmann M, Evans S, Komar N, , 2009. Seasonal blood-feeding behavior of Culex tarsalis (Diptera: Culicidae) in Weld County, Colorado, 2007. J Med Entomol 46: 380390.[Crossref] [Google Scholar]
  31. Bibby CJ, Burgess ND, Hill DA, Mustoe SH, , 2000. Bird Census Techniques, 2nd ed. New York: Academic Press. [Google Scholar]
  32. Gale GA, Hanners LA, Patton SR, , 1997. Reproductive success of worm-eating Warblers in a forested landscape. Conservation Biology 11: 246250.[Crossref] [Google Scholar]
  33. Johnson DH, , 2008. In defense of indices: the case of bird surveys. J Wildl Manage 72: 857868.[Crossref] [Google Scholar]
  34. Gaunt AS, Oring LW, , 1999. Guidelines to the Use of Wild Birds in Research: The Ornithological Council. Available at: http://www.nmnh.si.edu/BIRDNET/GuideToUse/. Accessed November 9, 2009. [Google Scholar]
  35. Johnson GD, Pebworth JL, Krueger HO, , 1991. Retention of transmitters attached to passerines using a glue-on technique. Journal of Field Ornithology 62: 486491. [Google Scholar]
  36. Perry MC, Haas GH, Carpenter JW, , 1981. Radio transmitters for mourning doves: a comparison of attachment techniques. J Wildl Manage 45: 524527.[Crossref] [Google Scholar]
  37. Rappole JH, Tipton AR, , 1991. New harness design for attachment of radio transmitters to small passerines. Journal of Field Ornithology 62: 335337. [Google Scholar]
  38. Mennill D, , 2001. How to Radiotrack Chickadees or Other Small Birds. Windsor, Canada. Available at: http://web2.uwindsor.ca/courses/biology/dmennill/radiotelem.html. Accessed November 9, 2009. [Google Scholar]
  39. Andreadis TG, Thomas MC, Shepard JJ, , 2005. Identification guide to the mosquitoes of Connecticut. New Haven, CT: The Connecticut Agricultural Experiment Station. [Google Scholar]
  40. Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM, Komar N, Panella NA, Allen BC, Volpe KE, Davis BS, Roehrig JT, , 2000. Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol 38: 40664071. [Google Scholar]
  41. Williams GM, Gingrich JB, , 2007. Comparison of light traps, gravid traps, and resting boxes for West Nile virus surveillance. J Vector Ecol 32: 285291.[Crossref] [Google Scholar]
  42. Biggerstaff BJ, , 2006. PooledInfRate, Version 3.0: A Microsoft Excel Add-In to Compute Prevalence Estimates from Pooled Samples. Available at: http://www.cdc.gov/ncidod/dvbid/westnile/software.htm. Accessed November 9, 2009. [Google Scholar]
  43. Sallabanks R, Frances CJ, Poole A, , 1999. American robin (Turdus migratorius). , ed. The Birds of North America Online. Available at: http://bna.birds.cornell.edu/bna/species/462/articles/introduction. Accessed November 9, 2009. [Google Scholar]
  44. Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD, , 2006. Host heterogeneity dominates West Nile virus transmission. Proc R Soc Lond B Biol Sci 273: 23272333.[Crossref] [Google Scholar]
  45. Ostfeld R, Keesing F, , 2000. The function of biodiversity in the ecology of vector-borne zoonotic diseases. Can J Zool 78: 20612078.[Crossref] [Google Scholar]
  46. Huang S, Hamer GL, Molaei G, Walker ED, Goldberg TL, Kitron UD, Andreadis TG, , 2009. Genetic variation associated with mammalian feeding in Culex pipiens from a West Nile virus epidemic region in Chicago, Illinois. Vector Borne Zoonotic Dis 9: 637642.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 31 Aug 2009
  • Accepted : 16 Nov 2009
  • Published online : 05 Feb 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error