Volume 83, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Five Galvão and Damasceno populations, representing diverse ecological conditions, were sampled throughout Colombia and analyzed using nine hypervariable DNA microsatellite loci. The overall genetic diversity ( = 0.58) was lower than that determined for some Brazilian populations using the same markers. The Caquetá population (Colombia) had the lowest gene diversity ( = 0.48), and it was the only population at Hardy–Weinberg equilibrium. Hardy–Weinberg disequilibrium in the remaining four populations was probably caused by the Wahlund effect. The assignment analyses showed two incompletely isolated gene pools separated by the Eastern Andean cordillera. However, other possible geographical barriers (rivers and other mountains) did not play any role in the moderate genetic heterogeneity found among these populations ( = 0.069). These results are noteworthy, because this species is a putative malaria vector in Colombia.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Cortés J, Caraballo A, Contreras C, Plowe C, , 2002. Origin and dissemination of Plasmodium falciparum drug-resistance mutations in South America. J Infect Dis 186: 9991006.[Crossref] [Google Scholar]
  2. Mendoza M, Nicholls R, Olano V, Cortés L, , 2000. Situación de la malaria en Colombia. Manual de Manejo integral de la malaria. Instituto Nacional de Salud Ed. Bogotá, Columbia: Instituto Nacional de Salud. [Google Scholar]
  3. Herrera S, Suárez M, Sánchez G, Quiñones M, Herrera M, , 1987. Uso de la técnica inmunoradiometrica (IRMA) en Anopheles de Colombia para la identificación de esporozoitos de Plasmodium . Colomb Med 18: 5760. [Google Scholar]
  4. Collins W, Warren W, Skinner J, Sutton B, , 1985. Infectivity of Plasmodium vivax to Anopheles albitarsis mosquitoes from Colombia. J Parasitol 71: 771773.[Crossref] [Google Scholar]
  5. Quiñones M, Suárez M, , 1990. Indoor resting heights of some anophelines in Colombia. J Am Mosq Control Assoc 6: 602604. [Google Scholar]
  6. Brochero H, Rey G, Buitrago L, Olano V, , 2005. Biting activity and breeding places of Anopheles species in the municipality Villavicencio, Meta, Colombia. J Am Mosq Control Assoc 21: 182186.[Crossref] [Google Scholar]
  7. Servicio de Erradicación de la Malaria (SEM), 1957. Plan de erradicación de la malaria en Colombia. Volumen I y II. Ministerio de Salud Nacional. Bogotá, Columbia: Ministerio Nacional de Salud. [Google Scholar]
  8. Rubio-Palis Y, Zimmermann R, , 1997. Ecoregional classification of malaria vectors in the Neotropics. J Med Entomol 34: 499510.[Crossref] [Google Scholar]
  9. Conn J, Wilkerson R, Nazaré M, Segura O, Raimundo T, De Souza L, , 2002. Emergence of a new neotropical malaria vector facilitated by human migration and changes in land use. Am J Trop Med Hyg 66: 1822. [Google Scholar]
  10. Brochero H, Li C, Wilkerson R, , 2007. A previously unrecognized species in the Anopheles (Nyssorhynchus) albitarsis complex (Diptera: Culicidae) from Puerto Carreño, Colombia. Am J Trop Med Hyg 76: 11131117. [Google Scholar]
  11. Motoki M, Wilkerson R, Sallum M, , 2009. The Anopheles albitarsis complex with the recognition of Anopheles oryzalimnetes Wilkerson and Motoki, n. sp. and Anopheles janconnae Wilkerson and Sallum, n. sp. (Diptera: Culicidae). Mem Inst Oswaldo Cruz 104: 823850.[Crossref] [Google Scholar]
  12. Narang S, Klein T, Perera O, Lima J, Tang A, , 1993. Genetic evidence for the existence of cryptic species in the Anopheles albitarsis complex in Brazil: allozymes and mitochondrial DNA restriction fragment length polymorphism. Biochem Genet 1: 97112.[Crossref] [Google Scholar]
  13. Conn J, Mitchell S, Cockburn A, , 1997. Mitochondrial DNA variation within and between two species of neotropical Anopheline mosquitoes (Diptera: Culicidae). J Hered 88: 98107.[Crossref] [Google Scholar]
  14. Posso C, González R, Cárdenas H, Tascón R, , 2006. Estructura genética de Anopheles darlingi Root, An. nuneztovari Gabaldon y An. marajoara Galvão & Damasceno de Colombia mediante RAPD-PCR. Revista Colombiana de Entomología 32: 4956. [Google Scholar]
  15. Faran M, Linthicum K, , 1981. A handbook of the Amazonian species of Anopheles (Nyssorhynchus). Mosq Syst 13: 185. [Google Scholar]
  16. Li C, Wilkerson R, , 2005. Identification of Anopheles (Nyssorhynchus) Albitarsis complex species (Diptera: Culicidae) using rDNA ITS2-based PCR primers. Mem Inst Oswaldo Cruz 100: 495500.[Crossref] [Google Scholar]
  17. Besansky N, Fahey T, , 1997. Utility of the white gene in estimating phylogenetic relationships among mosquitoes (Diptera:Culicidae). Mol Biol Evol 14: 442444.[Crossref] [Google Scholar]
  18. Wilkerson R, Parson T, Albringht T, Klein T, Braun M, , 1993. Random amplified polymorphic DNA (RAPD) markers readily distinguish cryptic mosquito species (Diptera: Culicidae: Anopheles). Insect Mol Biol 1: 205211.[Crossref] [Google Scholar]
  19. Li C, Wilkerson R, Fonseca D, , 2005. Isolation of polmorphic microsatellite markers from the malaria vector Anopheles (Nyssorhynchus) marajoara. (Diptera: Culicidae). Mol Ecol Notes 5: 6567.[Crossref] [Google Scholar]
  20. Nei M, , 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70: 33213323.[Crossref] [Google Scholar]
  21. Archie JW, , 1985. Statistical analysis of heterozygosity data: independent sample comparisons. Evolution 39: 623637.[Crossref] [Google Scholar]
  22. Weir B, Cokerham C, , 1984. Estimating F statistics for the analysis of population structure. Evolution 38: 13581370.[Crossref] [Google Scholar]
  23. Raymond M, Rousset F, , 1995. GenePop version 3.1 population genetics software for exact tests and ecumenicism. J Hered 86: 248249.[Crossref] [Google Scholar]
  24. Raymond M, Rousset F, , 2003. Updated version of GenePop version 3.1 described in: Raymond M, Rousset F. 1995. Population genetics software for exact tests and ecumenicism. J Hered 86: 248249.[Crossref] [Google Scholar]
  25. Wright S, , 1951. The genetical structure of populations. Ann Eugen 15: 323354.[Crossref] [Google Scholar]
  26. Goudet J, Raymond M, de Meeus T, Rousset F, , 1996. Testing differentiation in diploid populations. Genetics 144: 19331940. [Google Scholar]
  27. Goudet J, , 2002. FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices (version 2.9.1). Switzerland: Institute of Ecology, University of Laussane. [Google Scholar]
  28. Slatkin M, , 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457462. [Google Scholar]
  29. Rouset F, , 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 12191228. [Google Scholar]
  30. Goodman S, , 1997. RST CALC: a collection of computer programs for calculating unbiased estimates of genetic differentiation and determining their significance for microsatellite data. Mol Ecol 6: 881885.[Crossref] [Google Scholar]
  31. Ruiz-García M, , 1993. Analysis of the evolution and genetic diversity within and between Balearic and Iberian cat populations. J Hered 84: 173180.[Crossref] [Google Scholar]
  32. Ruiz-García M, , 1998. Genetic structure and evolution of different cat populations (Felis catus) in Spain, Italy, Argentina at microgeographical level. Acta Theriol (Warsz) 43: 3966.[Crossref] [Google Scholar]
  33. Ruiz-García M, Alvarez D, , 2000. Genetic microstructure in two Spanish cat populations. I: genetic diversity, gene flow and selection. Genes Genet Syst 75: 269280.[Crossref] [Google Scholar]
  34. Takahata N, , 1983. Gene identity and genetic differentiation of populations in the finite island model. Genetics 104: 497512. [Google Scholar]
  35. Crow J, Aoki K, , 1984. Group selection for a polygenic behavioural trait. Proc Natl Acad Sci USA 81: 60736077.[Crossref] [Google Scholar]
  36. Slatkin M, , 1985. Rare alleles as indicators of gene flow. Evolution 39: 5365.[Crossref] [Google Scholar]
  37. Barton N, Slatkin M, , 1986. A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56: 409415.[Crossref] [Google Scholar]
  38. Pritchard J, Stephens M, Donnelly P, , 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945959. [Google Scholar]
  39. Lehr M, Kilpatrick C, Wilkerson R, Conn J, , 2005. Cryptic species in the Anopheles (Nyssorhynchus) albitarsis (Diptera: Culicidae) complex: incongruence between RAPD-PCR identification and analysis of mtDNA COI gene sequences. Ann Entomol Soc Am 98: 908917.[Crossref] [Google Scholar]
  40. Cornuet J, Piry D, Luikart G, Estoup A, Solignac M, , 1999. New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics 153: 19892000. [Google Scholar]
  41. Luikart G, Sherwin W, Steele B, Allendorf F, , 1998. Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic changes. Mol Ecol 7: 963974.[Crossref] [Google Scholar]
  42. Garza JC, Williamson EG, , 2001. Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10: 305318.[Crossref] [Google Scholar]
  43. Reich DE, Goldstein DB, , 1998. Genetic evidence for a Paleolitic human population expansion in Africa. Proc Natl Acad Sci USA 95: 81198123.[Crossref] [Google Scholar]
  44. Reich DE, Feldman MW, Goldstein DB, , 1999. Statistical properties of two tests that use multilocus data sets to detect population expansions. Mol Biol Evol 16: 453466.[Crossref] [Google Scholar]
  45. Kimmel M, Chakravorty R, King JP, Bamshad M, Watkins WS, Jorde LB, , 1998. Signatures of population expansion in microsatellite repeat data. Genetics 148: 19211930. [Google Scholar]
  46. Zhivotovsky LA, Bennett L, Bowcock AM, Feldman MW, , 2000. Human population expansion and microsatellite variation. Mol Biol Evol 17: 757767.[Crossref] [Google Scholar]
  47. Beumont M, , 1999. Detecting population expansions and decline using microsatellites. Genetics 153: 20132029. [Google Scholar]
  48. Conn J, Vineis J, Bollback J, Onyabe D, Wilkerson R, Povoa M, , 2006. Population structure of the malaria vector Anopheles darlingi in a malaria-endemic region of eastern Amazonian Brazil. Am J Trop Med Hyg 74: 798806. [Google Scholar]
  49. Molina-Cruz A, De Mérida A, Mills K, Rodriguez F, Schoua C, Yurrita M, Molina E, Palmieri M, Black W IV, , 2004. Gene flow among Anopheles albimanus populations in Central America, South America and the Caribbean assessed by microsatellites and mitochondrial DNA. Am J Trop Med Hyg 71: 350359. [Google Scholar]
  50. Lehmann T, Hawley W, Grebert H, Danga M, Atieli F, Collins F, , 1999. The Rift Valley complex as a barrier to gene flow for Anopheles gambiae in Kenya. J Hered 90: 613621.[Crossref] [Google Scholar]
  51. Lehmann T, Licht M, Elissa N, Maega T, Chimumbwa J, Watsenga T, Wondji C, Simard F, Hawley W, , 2003. Population structure of Anopheles gambiae in Africa. J Hered 94: 133147.[Crossref] [Google Scholar]
  52. Norris D, Shurtleff A, Touré Y, Lanzaro G, , 2001. Microsatellite DNA polymorphism and heterozygosity among field and laboratory populations of Anopheles gambiae (Diptera: Culicidae). J Med Entomol 38: 336340.[Crossref] [Google Scholar]
  53. Wondji C, Simard F, Fontenille D, , 2002. Evidence for genetic differentiation between the molecular forms M and S within the Forest chromosomal form of Anopheles gambiae in an area of sympatry. Insect Mol Biol 11: 1119.[Crossref] [Google Scholar]
  54. Rongnoparut R, Sirichotpakorn N, Rattanarithikul R, Yaicharoen S, Lithincum K, , 1999. Estimates of gene flow among Anopheles maculatus populations in Thailand using microsatellite analysis. Am J Trop Med Hyg 60: 508515. [Google Scholar]
  55. Onyabe D, Conn J, , 2001. Genetic differentiation of the malaria vector Anopheles gambiae across Nigeria suggests that selection limits gene flow. Heredity 87: 647658.[Crossref] [Google Scholar]
  56. Estrada-Franco J, Lanzaro G, Ma M, Walker-Abbey A, Romans P, Galvan-Sanchez C, Céspedes J, Vargas-Sagarnaga R, Laughinghouse A, Columbus I, Gwadz R, , 1993. Characterization of Anopheles pseudopunctipennis sensu lato from three countries of neotropical America from variation in allozymes and ribosomal DNA. Am J Trop Med Hyg 49: 735745. [Google Scholar]
  57. Goldstein B, Ruiz-Linares A, Cavalli-Sforza L, Feldman W, , 1995. Genetic absolute dating on microsatellites and the origin of modern humans. Proc Natl Acad Sci USA 92: 67236727.[Crossref] [Google Scholar]
  58. Kamau L, Mukabana W, Hawley W, Lehmann T, Irungu L, Orago A, Collins F, , 1999. Analysis of genetic variability in Anopheles arabiensis and Anopheles gambiae using microsatellite loci. Insect Mol Biol 8: 287297.[Crossref] [Google Scholar]
  59. Kamau L, Hunt R, Coetzee M, , 2002. Analysis of the population structure of Anopheles funestus Giles (Diptera: Culicidae) from Kenya using paracentric chromosomal inversion frequencies. J Med Entomol 39: 7883.[Crossref] [Google Scholar]
  60. Mendes dos Santos J, Freitas Maia J, Tadeo P, Diaz G, , 2003. Isoenzymatic variability among five Anopheles species belonging to the Nyssorhynchus and Anopheles subgenera of the Amazon Region, Brazil. Mem Inst Oswaldo Cruz 98: 247253.[Crossref] [Google Scholar]
  61. Coluzzi M, Sabatini A, Petrarca V, Di Deco M, , 1979. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg 73: 483497.[Crossref] [Google Scholar]
  62. Lanzaro G, Toure Y, Carnahans J, Zheng L, Dolo G, Traore S, Petrarca V, Vernic K, Taylor C., 1998. Complexities in the genetic structure of Anopheles gambiae populations in West Africa as revealed by microsatellite DNA analysis. Proc Natl Acad Sci USA 95:1426014265.[Crossref] [Google Scholar]
  63. Mirabello L, Conn J, , 2006. Molecular population genetics of the malaria vector Anopheles darlingi in Central and South America. Heredity 96: 311321.[Crossref] [Google Scholar]
  64. Ravel S, Monteny N, Velasco Olmos D, Escalante Verdugo J, Cuny G, , 2001. A preliminary study of the population genetics of Aedes aegypti (Diptera: Culicidae) from Mexico using microsatellite and AFLP markers. Acta Trop 78: 241250.[Crossref] [Google Scholar]
  65. Bosio CF, Harrington LC, Jones JW, Sithiprasasna R, Norris DE, Scott TW, , 2005. Genetic structure of Aedes aegypti populations in Thailand using mitochondrial DNA. Am J Trop Med Hyg 72: 434442. [Google Scholar]
  66. Herrera F, Urdaneta L, Rivero J, Zoghbi N, Ruiz J, Carrasquel G, Martinez JA, Pernalete M, Villegas P, Montoya A, Rubio-Palis Y, Rojas E, , 2006. Population genetic structure of the dengue mosquito Aedes aegypti in Venezuela. Mem Inst Oswaldo Cruz 10: 625633.[Crossref] [Google Scholar]
  67. Lehmann T, Hawley W, Grebert H, Collins F, , 1998. The effective population size of Anopheles gambiae in Kenya: implications for population structure. Mol Biol Evol 15: 264276.[Crossref] [Google Scholar]
  68. Ruiz-García M, Ramírez D, Bello F, Alvarez D, , 2003. Psorophora columbiae and Psorophora toltecum (Diptera: Culicidae) Colombian populations cannot be differentiated by isoenzymes. Genet Mol Res 2: 229259. [Google Scholar]
  69. Ruiz-García M, Bello F, Ramírez D, Alvarez D, , 2006. Genetic structure of the genera Psorophora (Diptera: Culicidae) in Columbian and North American populations using isoenzymes and ITS2 sequences. Russ J Genet 42: 752765.[Crossref] [Google Scholar]
  70. De Souza G, De Dutari GP, Gardenal C, , 2000. Genetic structure of Aedes albifasciatus (Diptera Culicidae) populations in Central Argentina determined by random amplified polymorphic DNA-polymerase chain reaction markers. J Med Entomol 86: 400404. [Google Scholar]
  71. Scarpassa V, Geurgas S, Azeredo-Espin A, Tadei W, , 2000. Genetic divergence in mitochondrial DNA of Anopheles nuneztovari (Diptera: Culicidae) from Brazil and Colombia. Genet Mol Biol 23: 7178.[Crossref] [Google Scholar]
  72. Dinardo-Miranda L, Contel E, , 1996. Enzymatic variability in natural populations of Aedes aegypti (Diptera: Culicidae) from Brazil. J Med Entomol 33: 726733.[Crossref] [Google Scholar]
  73. De Souza G, Jimenez A, Blanco A, Gardenal C, , 1996. Gene flow in Aedes albifasciatus (Diptera: Culicidae) from Central Argentina. J Med Entomol 33: 894900.[Crossref] [Google Scholar]
  74. Ravel S, Monteny N, Velasco Olmos D, Escalante Verdugo J, Cuny G, , 2001. A preliminary study of the population genetics of Aedes aegypti (Diptera: Culicidae) from Mexico using microsatellites and AFLP markers. Acta Trop 78: 241250. [Google Scholar]
  75. Vazeille M, Mousson L, Rakatoarivony I, Villeret R, Rodhain F, Duchemin JB, Failloux AB, , 2001. Population genetic structure and competence as a vector for dengue type 2 virus of Aedes aegypti and Aedes albopictus from Madagascar. Am J Trop Med Hyg 65: 491497. [Google Scholar]
  76. García-Franco F, Lourdes Muñoz M, Lozano-Fuentes S, Fernandez-Salas I, García-Rejon J, Beaty BJ, Black WC IV, , 2002. Large genetic distances among Aedes aegypti populations along the South Pacific coast of Mexico. Am J Trop Med Hyg 64: 594598. [Google Scholar]
  77. Ministerio de la Protección Social, Instituto Nacional de Saud, 2009. Sistema nacional de vigilancia SIVIGILA, 2009. Informe Quincenal Epidemiológico Nacional 14: 4769. [Google Scholar]

Data & Media loading...

  • Received : 20 Aug 2009
  • Accepted : 24 Mar 2010
  • Published online : 07 Sep 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error