Volume 82, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



The micro-geographic structure of was studied in southern Central America using partial sequences of the mtDNA cytochrome oxidase subunit I gene (COI). Analysis of molecular variance supported significant genetic structure between populations from Costa Rica and western Panama versus those from central-eastern Panama (Φ = 0.33), whereas the within group divergence was shallow and statistically insignificant (Φ = 0.08). Furthermore, a statistical parsimony network depicted three divergent groups of haplotypes that were not evenly distributed across the study area. Our findings are in partial agreement with previous studies, yet they do not support physical barriers to gene flow or contemporary isolation by distance in this region. Instead, three co-occurring groups of may be the result of multiple introductions, most likely caused by historical fragmentation and subsequent secondary contact. In addition, the molecular signature of population expansion of was detected in central-eastern Panama approximately 22,000 years ago (95% confidence interval [CI] 10,183–38,169). We hypothesize that the population structure of , as determined by our COI locus analysis, is the result of late Pleistocene climatic changes in northern South America.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Pan American Health Organization, 2006. Regional Strategic Plan for Malaria in the Americas 2006–2010. Washington, DC: Pan American Health Organization. [Google Scholar]
  2. Ministerio Nacional de Salud de Panamá, 2007. Análisis de la Situación de Malaria en Panamá. Boletín Epidemiológico. Available at: http://www.minsa.gob.pa. Accessed May 4, 2009. [Google Scholar]
  3. Loaiza JR, Bermingham E, Scott ME, Rovira JR, Conn JE, , 2008. Species composition and distribution of adult Anopheles (Diptera: Culicidae) in Panama. J Med Entomol 45: 841851.[Crossref] [Google Scholar]
  4. Calzada EJ, Samudio F, Bayard V, Obaldia N, De Mosca IB, Pascale JM, , 2009. Revising antimalarial drug policy in Central America: experience of Panama. Trans R Soc Trop Med Hyg 102: 694698.[Crossref] [Google Scholar]
  5. Loaiza J, Scott M, Bermingham E, Rovira J, Conn J, , 2009. Short report: Anopheles darlingi in Panama. Am J Trop Med Hyg 81: 2326. [Google Scholar]
  6. Lehmann T, Licht M, Elissa N, Maega BT, Chimumbwa JM, Watsenga FT, Wondji CS, Simard F, Hawley WA, , 2003. Population structure of Anopheles gambiae in Africa. J Hered 94: 133147.[Crossref] [Google Scholar]
  7. Mirabello L, Vineis JH, Yanoviak SP, Scarpassa VM, Povoa MM, Padilla N, Nicole LA, Conn JE, , 2008. Microsatellite data suggest significant population structure and differentiation within the malaria vector Anopheles darlingi in Central and South America. BMC Ecol 8: 3.[Crossref] [Google Scholar]
  8. Walton C, Handley JM, Tun-Lin W, , 2000. Population structure and population history of Anopheles dirus mosquitoes in Southeast Asia. Mol Biol Evol 17: 962974.[Crossref] [Google Scholar]
  9. Mirabello L, , 2007. Molecular Population Genetics of the Malaria Vector Anopheles darlingi throughout Central and South America using Mitochondrial, Nuclear and Microsatellites Markers. Ph.D. Thesis. Albany, NY: University at Albany. [Google Scholar]
  10. O'Loughlin SM, Okabayashi T, Honda M, Kitazoe Y, Kishino H, Somboon P, Sochantha T, Nambanya S, Saikia PK, Dev V, Walton C, , 2008. Complex population history of two Anopheles dirus mosquito species in south Asia suggests the influence of Pleistocene climate change rather than human-mediated effects. J Evol Biol 21: 15551569.[Crossref] [Google Scholar]
  11. Faran ME, , 1980. Mosquito studies (Diptera: Culicidae) XXXIV. A revision of the Albimanus section of the subgenus Nyssorhynchus of Anopheles, contrib. Am Entomol Inst 15: 1215. [Google Scholar]
  12. Breeland SG, , 1972. Studies on the ecology of Anopheles albimanus . Am J Trop Med Hyg 21: 751754. [Google Scholar]
  13. Hobbs J, Sexton J, St. Jean Y, Jacques J, , 1986. The biting and resting behavior of Anopheles albimanus in northern Haiti. J Am Mosq Control Assoc 2: 150153. [Google Scholar]
  14. Beach RF, Mills D, Collins FH, , 1989. Structure of ribosomal DNA in Anopheles albimanus (Diptera: Culicidae). Ann Entomol Soc Am 81: 641648.[Crossref] [Google Scholar]
  15. Narang SK, Seawright JA, Suarez MF, , 1991. Genetic structure of natural populations of Anopheles albimanus in Colombia. J Am Mosq Control Assoc 7: 337345. [Google Scholar]
  16. De Merida AM, De Mata MP, Molina E, Porter CH, Black WC, , 1995. Variation in ribosomal DNA intergenic spacers among populations of Anopheles albimanus in South and Central America. Am J Trop Med Hyg 53: 469477. [Google Scholar]
  17. Collins WE, Skinner JC, Warren M, Richardson B, , 1976. Studies on human malaria in Aotus monkeys. VII. Comparative infectivity of two strains of Plasmodium vivax to Anopheles freeborni, An. maculatus, and four strains of An. albimanus . J Parasitol 62: 190194.[Crossref] [Google Scholar]
  18. Frederickson EC, , 1993. Bionomics and Control of Anopheles albimanus. Washington, DC: Pan American Health Organization, Pan American Sanitary Bureau Regional Office of the World Health Organization. [Google Scholar]
  19. Grieco JP, Achee NL, Roberts DR, Andre RG, , 2005. Comparative susceptibility of three species of Anopheles from Belize, Central America, to Plasmodium falciparum (Nf-54). J Am Mosq Control Assoc 21: 279290.[Crossref] [Google Scholar]
  20. Achee NA, Achee N, Grieco JP, Andre RG, Rejmankova E, Roberts DR, , 2007. A mark release-recapture study to define the flight behaviours of Anopheles vestitipennis and An. albimanus in Belize, Central America. J Am Mosq Control Assoc 3: 276282.[Crossref] [Google Scholar]
  21. De Merida AM, Palmieri M, Yurrita M, Molina A, Molina E, Black WC, , 1999. Mitochondrial DNA variation among Anopheles albimanus populations. Am J Trop Med Hyg 6: 230239. [Google Scholar]
  22. Molina-Cruz A, De Merida AM, Mills K, Rodriguez F, Schoua C, Yurrita MM, Molina E, Palmieri M, William CB, , 2004. Gene flow among Anopheles albimanus populations in Central America, South America, and the Caribbean assessed by microsatellites and mitochondrial DNA. Am J Trop Med Hyg 71: 350359. [Google Scholar]
  23. Conn JE, Mirabello L, , 2007. The biogeography and population genetics of neotropical vector species. Heredity 99: 245256.[Crossref] [Google Scholar]
  24. Fairley TL, Renaud TM, Conn JE, , 2000. Effects of local geographic barriers and latitude on population structure in Anopheles punctipennis (Diptera: Culicidae). J Med Entomol 37: 754760.[Crossref] [Google Scholar]
  25. Mirabello L, Conn JE, , 2006. Molecular population genetics of the malaria vector Anopheles darlingi in Central and South America. Heredity 96: 311321.[Crossref] [Google Scholar]
  26. Wilkerson RC, Strickman D, , 1990. Illustrated key to the female anopheline mosquitoes of Central America and Mexico. J Am Mosq Control Assoc 6: 734. [Google Scholar]
  27. Lunt DH, Zhang DX, Szymura JM, Hewitt GM, , 1996. The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Mol Biol 5: 153165.[Crossref] [Google Scholar]
  28. Swofford DL, , 2003. PAUP (Phylogenetic Analysis Using Parsimony) and Other Methods, Version 4. Sunderland, MA: Sinauer Associates. [Google Scholar]
  29. Maddison WP, Maddison DR, , 1997. MacClade: Analysis of Phylogeny and Character Evolution, Version 3.07. Sunderland, MA: Sinauer Associates. [Google Scholar]
  30. Tamura K, Dudley J, Nei M, Kumar S, , 2007. MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 15961599.[Crossref] [Google Scholar]
  31. Clement M, Posada D, Crandall KA, , 2000. TCS: a computer program to estimate gene genealogies. Mol Ecol 9: 16571659.[Crossref] [Google Scholar]
  32. Posada D, Crandall KA, Templeton AR, , 2000. GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol Ecol 9: 487488.[Crossref] [Google Scholar]
  33. Crandall KA, Templeton AR, , 1993. Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134: 959969. [Google Scholar]
  34. Uthicke S, Benzie JAH, , 2003. Gene flow and population history in high dispersal marine invertebrates: mitochondrial DNA analysis of Holothuria nobilis (Echinodermata: Holoturoidea) populations from the Indo-Pacific. Mol Ecol 12: 26352648.[Crossref] [Google Scholar]
  35. Excoffier L, Laval G, Schmeider S, , 2005. Arlequin (version 3.0): an integrated software package for population genetic data analysis. Evol Bioinform Online 1: 4750. [Google Scholar]
  36. Mantel N, , 1967. The detection of disease clustering and a generalized regression approach. Cancer Res 27: 209220. [Google Scholar]
  37. Jensen J, Bohonak AJ, Kelley ST, , 2005. Isolation by distance, web service. BMC Genet 6: 13.[Crossref] [Google Scholar]
  38. Tajima F, , 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphisms. Genetics 123: 585595. [Google Scholar]
  39. Fu YX, Li WH, , 1993. Statistical tests of neutrality of mutations. Genetics 133: 693709. [Google Scholar]
  40. Fu YX, , 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915925. [Google Scholar]
  41. Ramos-Onsins SE, Rozas J, , 2002. Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19: 20922100.[Crossref] [Google Scholar]
  42. Kimura M, , 1983. The Neutral Theory of Molecular Evolution. Cambridge, England: Cambridge University Press.[Crossref] [Google Scholar]
  43. Rozas J, Sanchez-Del Rio JC, Messeguer X, Rozas R, , 2003. DnaSP, DNA polymorphism analyses by the coalescence and other methods. Bioinformatics 19: 24962497.[Crossref] [Google Scholar]
  44. Nei M, , 1987. Molecular Evolutionary Genetics. New York: Columbia University Press. [Google Scholar]
  45. Harpending HC, Sherry ST, Rogers AR, Stoneking M, , 1993. The genetic structure of ancient human populations. Curr Anthropol 34: 483496.[Crossref] [Google Scholar]
  46. Rogers AR, , 1995. Genetic evidence for a Pleistocene population explosion. Evolution 49: 608615.[Crossref] [Google Scholar]
  47. Tamura K, Nei M, , 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512526. [Google Scholar]
  48. Castelloe J, Templeton AR, , 1994. Root probabilities for intraspecific gene trees under neutral coalescent theory. Mol Phyl Evol 3: 102113.[Crossref] [Google Scholar]
  49. Powell JR, Caccone A, Amato GD, Yoon C, , 1986. Rate of nucleotide substitution in Drosophila mitochondrial DNA and nuclear DNA are similar. Proc Natl Acad Sci USA 83: 90909093.[Crossref] [Google Scholar]
  50. Mirabello L, Conn JE, , 2008. Population analysis using the nuclear white gene detects Pliocene/Pleistocene lineage divergence within Anopheles nuneztovari in South America. Med Vet Entomol 22: 109119.[Crossref] [Google Scholar]
  51. Conn JE, Vineis JH, Bollback JP, Onyabe DY, Wilkerson RC, Póvoa MM, , 2006. Population structure of the malaria vector Anopheles darlingi in a malaria-endemic region of eastern Amazonian Brazil. Am J Trop Med Hyg 74: 798806. [Google Scholar]
  52. Scarpassa VM, Conn JE, , 2007. Population genetic structure of the major malaria vector Anopheles darlingi (Diptera: Culicidae) from the Brazilian Amazon, using microsatellite markers. Mem Inst Oswaldo Cruz 102: 319327.[Crossref] [Google Scholar]
  53. Conn J, Mitchell SE, Cockburn AF, , 1998. Mitochondrial DNA analysis of the neotropical malaria vector Anopheles nuneztovari . Genome 41: 313327.[Crossref] [Google Scholar]
  54. Telles MP, Diniz-Filho JA, , 2005. Multiple Mantel test and isolation by distance, taking into account long-term historical divergence. Genet Mol Res 4: 742748. [Google Scholar]
  55. Trapido H, , 1952. Modified response of Anopheles albimanus to DDT residual house spraying in Panama. Am J Trop Med Hyg 15: 853861. [Google Scholar]
  56. Zink RM, Barrowclough GF, , 2008. Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 17: 21072121.[Crossref] [Google Scholar]
  57. Templeton AR, , 1998. Nested clade analyses of phylogeographic data: testing hypotheses about gene flow and population history. Mol Ecol 7: 381397.[Crossref] [Google Scholar]
  58. Kolbe JJ, Glor RE, Schettino LR, Lara AD, Larson A, Losos JB, , 2004. Genetic variation increases during biological invasion by a Cuban lizard. Nature 431: 177181.[Crossref] [Google Scholar]
  59. Gonzáles C, Urrego LE, Martínez JI, , 2006. Late quaternary vegetation and climate change in the Panama basin: palynological evidence from marine cores ODP 677 and TR 163-38. PALAEO 234: 6280. [Google Scholar]
  60. Golik A, , 1968. History of the Holocene transgression in the Gulf of Panama. J Geol 76: 497507.[Crossref] [Google Scholar]
  61. Bermingham E, Martin AP, , 1998. Comparative mtDNA phylogeography of neotropical fresh water fishes: testing shared history to infer the evolutionary landscape of lower Central America. Mol Ecol 7: 499517.[Crossref] [Google Scholar]
  62. Zeh JA, Zeh DW, Bonilla MM, , 2003. Phylogeography of the harlequin beetle-riding pseudoscorpion and the rise of the Isthmus of Panama. Mol Ecol 12: 27592769.[Crossref] [Google Scholar]
  63. Weigt LA, Crawford AJ, Stanley Rand A, Ryan M, , 2005. Biogeography of the tungara frog, Physalaemus pustulosus: a molecular perspective. Mol Ecol 14: 38573876.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 24 Jul 2009
  • Accepted : 28 Sep 2009
  • Published online : 05 Jan 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error