Volume 83, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



is an important vector of spp. in several malaria-endemic regions of Colombia. This study was conducted to test genetic variation of at a microgeographic scale (approximately 100 km) from localities in Córdoba and Antioquia states, in western Colombia, to better understand the potential contribution of population genetics to local malaria control programs. Microsatellite loci: nuclear and cytochrome oxidase subunit I () gene sequences were analyzed. The northern gene lineage was exclusively distributed in Córdoba and Antioquia and shared haplotypes were highly represented in mosquitoes from both states. analyses showed these are genetically closer to Central American populations than southern South American populations. Overall microsatellites and analysis showed low to moderate genetic differentiation among populations in northwestern Colombia. Given the existence of high gene flow between populations of Córdoba and Antioquia, integrated vector control strategies could be developed in this region of Colombia.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Organizacion Panamericana de la Salud, 2008. Technical Documents. Status of Malaria in the Americas, 1994–2007: A Series of Data Tables. Available at: http://amro.who.int/common/Display.asp?Lang=&RecID=10688. Accessed April 2009. [Google Scholar]
  2. World Health Organization, 2008. World Malaria Report 2008. Geneva: World Health Organization Library Cataloguing-in-Publication Data. World Health Organization. Available at: http://apps.who.int/malaria/wmr2008/malaria2008.pdf. Accessed April 2009. [Google Scholar]
  3. INS, 2008. Boletín Epidemiológico Semanal. Estadísticas del Sistema de Vigilancia en Salud Pública – SIVIGILA, Casos Totales en la Semana Epidemiológica 53 y Acumulados del Año. Instituto Nacional de Salud, Subdirección de Vigilancia y Control en Salud Pública. Available at: www.ins.gov.co. Accessed March 2009. [Google Scholar]
  4. Gobernación de Córdoba, 2008. Situación Epidemiológica del Programa de Enfermedades Transmitidas por Vectores. Datos suministrados por la Secretaría de Desarrollo de la Salud. Montería, Córdoba, Colombia. [Google Scholar]
  5. DSSA, 2008. Incidencia de Malaria Total por Municipios y Regiones. Direccion Seccional de Salud de Antioquia. Available at: http://www.dssa.gov.co/htm/inciden.htm. Accessed April 2009. [Google Scholar]
  6. Olano VA, Brochero H, Sáenz R, Quiñones M, Molina J, , 2001. Mapas preliminares de la distribución de especies de Anopheles vectores de malaria en Colombia. Biomedica (Bogota) 21: 402408. [Google Scholar]
  7. González R, Carrejo N, , 2007. Introducción al Estudio Taxonómico de Anopheles de Colombia: Claves y Notas de Distribución. 2nd edition, Cali, Colombia: Programa Editorial Universidad del Valle. [Google Scholar]
  8. Gutiérrez LA, González JJ, Gómez GF, Castro MI, Rosero DA, Luckhart S, Conn JE, Correa MM, , 2009. Species composition and natural infectivity of anthropophilic Anopheles (Diptera: Culicidae) in the states of Córdoba and Antioquia, northwestern Colombia. Mem Inst Oswaldo Cruz 104: 11171124. [Google Scholar]
  9. Fleming G, , 1986. Biología y Ecología los Vectores de la Malaria en las Américas. Washington, DC: Organización Panamericana de la Salud. [Google Scholar]
  10. Galardo AK, Arruda M, D'Almeida Couto AA, Wirtz R, Lounibos LP, Zimmerman RH, , 2007. Malaria vector incrimination in three rural riverine villages in the Brazilian Amazon. Am J Trop Med Hyg 76: 461469. [Google Scholar]
  11. Manguin S, Wilkerson RC, Conn JE, Rubio-Palis Y, Danoff-Burg JA, Roberts DR, , 1999. Population structure of the primary malaria vector in South America, Anopheles darlingi, using isozyme, random amplified polymorphic DNA, internal transcribed spacer 2, and morphologic markers. Am J Trop Med Hyg 60: 364376. [Google Scholar]
  12. Loaiza J, Scott ME, Bermingham E, Rovira JR, Sanjur O, Conn JE, , 2009. Anopheles darlingi (Diptera: Culicidae) in Panamá. Am J Trop Med Hyg 81: 2326. [Google Scholar]
  13. Lounibos L, Conn JE, , 2000. Malaria vector heterogeneity in South America. Am Entomol 46: 238249.[Crossref] [Google Scholar]
  14. Donnelly MJ, Simard F, Lehmann T, , 2002. Evolutionary studies of malaria vectors. Trends Parasitol 18: 7580.[Crossref] [Google Scholar]
  15. Angella AF, Gil LH, Silva LH, Ribolla PE, , 2007. Population structure of the malaria vector Anopheles darlingi in Rondonia, Brazilian Amazon, based on mitochondrial DNA. Mem Inst Oswaldo Cruz 102: 953958.[Crossref] [Google Scholar]
  16. Girod R, Gaborit P, Carinci R, Issaly J, Fouque F, , 2008. Anopheles darlingi bionomics and transmission of Plasmodium falciparum, Plasmodium vivax and Plasmodium malariae in Amerindian villages of the Upper-Maroni Amazonian forest, French Guiana. Mem Inst Oswaldo Cruz 103: 702710.[Crossref] [Google Scholar]
  17. Magris M, Rubio-Palis Y, Menares C, Villegas L, , 2007. Vector bionomics and malaria transmission in the Upper Orinoco River, southern Venezuela. Mem Inst Oswaldo Cruz 102: 303311.[Crossref] [Google Scholar]
  18. da Silva AN, Santos CC, Lacerda RN, Machado RL, Povoa MM, , 2006. Susceptibility of Anopheles aquasalis and An. darlingi to Plasmodium vivax VK210 and VK247. Mem Inst Oswaldo Cruz 101: 547550.[Crossref] [Google Scholar]
  19. Mirabello L, Conn JE, , 2006. Molecular population genetics of the malaria vector Anopheles darlingi in Central and South America. Heredity 96: 311321.[Crossref] [Google Scholar]
  20. Mirabello L, Vineis JH, Yanoviak SP, Scarpassa VM, Povoa MM, Padilla N, Achee NL, Conn JE, , 2008. Microsatellite data suggest significant population structure and differentiation within the malaria vector Anopheles darlingi in Central and South America. BMC Ecol 8: 3.[Crossref] [Google Scholar]
  21. Charlwood JD, , 1996. Biological variation in Anopheles darlingi Root. Mem Inst Oswaldo Cruz 91: 391398. [Google Scholar]
  22. Hudson JE, , 1984. Anopheles darlingi Root (Diptera: Culicidae) in the Suriname rain forest. Bull Entomol Res 74: 129142.[Crossref] [Google Scholar]
  23. Klein T, Lima J, , 1990. Seasonal distribution and biting patterns of Anopheles mosquitoes in Costa Marques, Rondônia, Brazil. J Am Mosq Control Assoc 6: 700707. [Google Scholar]
  24. Behura SK, , 2006. Molecular marker systems in insects: current trends and future avenues. Mol Ecol 15: 30873113.[Crossref] [Google Scholar]
  25. Li C, Wilkerson RC, , 2007. Intragenomic rDNA ITS2 variation in the neotropical Anopheles (Nyssorhynchus) albitarsis complex (Diptera: Culicidae). J Hered 98: 5159.[Crossref] [Google Scholar]
  26. Conn JE, Rosa-Freitas MG, Luz SL, Momen H, , 1999. Molecular population genetics of the primary neotropical malaria vector Anopheles darlingi using mtDNA. J Am Mosq Control Assoc 15: 468474. [Google Scholar]
  27. Conn JE, Vineis JH, Bollback JP, Onyabe DY, Wilkerson RC, Povoa MM, , 2006. Population structure of the malaria vector Anopheles darlingi in a malaria-endemic region of eastern Amazonian Brazil. Am J Trop Med Hyg 74: 798806. [Google Scholar]
  28. Scarpassa VM, Conn JE, , 2007. Population genetic structure of the major malaria vector Anopheles darlingi (Diptera: Culicidae) from the Brazilian Amazon, using microsatellite markers. Mem Inst Oswaldo Cruz 102: 319327.[Crossref] [Google Scholar]
  29. Conn JE, Mirabello L, , 2007. The biogeography and population genetics of neotropical vector species. Heredity 99: 245256.[Crossref] [Google Scholar]
  30. Mirabello L, , 2007. Molecular Population Genetics of the Malaria Vector Anopheles darlingi throughout Central and South America using Mitochondrial, Nuclear, and Microsatellite Markers. PhD Thesis. Albany, NY: State University of New York at Albany, Biomedical Sciences Department. [Google Scholar]
  31. Gonzalez R, Wilkerson R, Suarez MF, Garcia F, Gallego G, Cardenas H, Posso CE, Duque MC, , 2007. A population genetics study of Anopheles darlingi (Diptera: Culicidae) from Colombia based on random amplified polymorphic DNA-polymerase chain reaction and amplified fragment length polymorphism markers. Mem Inst Oswaldo Cruz 102: 255262.[Crossref] [Google Scholar]
  32. Posso C, González R, Cárdenas H, Tascón Y, , 2006. Estructura genetica de Anopheles darlingi Root, An. nuneztovari Gabaldon y An. marajoara Galvao & Damasceno de Colombia mediante RAPD-PCR. Revista Colombiana de Entomologia 32: 4956. [Google Scholar]
  33. Conn J, Bollback JP, Onyabe DY, Robinson T, Wilkerson R, Póvoa M, , 2001. Isolation of polymorphic microsatellite markers from the malaria vector Anopheles darlingi . Mol Ecol Notes 1: 223225.[Crossref] [Google Scholar]
  34. INS, 2009. Red Nacional de Vigilancia de la Resistencia a Insecticidas Bogotá, Colombia. Instituto Nacional de Salud. Laboratorio de Entomología de la Subdirección Red Nacional de Laboratorios. Available at: http://www.ins.gov.co/?idcategoria=1573. Accessed May 2009. [Google Scholar]
  35. Fonseca-Gonzalez I, Quinones ML, McAllister J, Brogdon WG, , 2009. Mixed-function oxidases and esterases associated with cross-resistance between DDT and lambda-cyhalothrin in Anopheles darlingi Root 1926 populations from Colombia. Mem Inst Oswaldo Cruz 104: 1826.[Crossref] [Google Scholar]
  36. Morrone JJ, , 2006. Biogeographic areas and transition zones of Latin America and the Caribbean islands based on panbiogeographic and cladistic analyses of the entomofauna. Annu Rev Entomol 51: 467494.[Crossref] [Google Scholar]
  37. Zapata MA, Cienfuegos AV, Quiros OI, Quinones ML, Luckhart S, Correa MM, , 2007. Discrimination of seven Anopheles species from San Pedro de Urabá, Antioquia, Colombia, by polymerase chain reaction-restriction fragment length polymorphism analysis of its sequences. Am J Trop Med Hyg 77: 6772. [Google Scholar]
  38. Cienfuegos AV, Gómez GF, Córdoba LA, Luckhart Shirley, Conn JE, Correa MM, , 2008. Diseño y evaluación de metodologías basadas en PCR-RFLP de ITS2 para la identificación molecular de mosquitos Anopheles spp. (Diptera: Culicidae) de la Costa Pacífica de Colombia Rev Biomed 19: 3544. [Google Scholar]
  39. Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A, , 2009. Geneious v4.7. Available at: http://www.geneious.com. [Google Scholar]
  40. Lunt DH, Zhang DX, Szymura JM, Hewitt GM, , 1996. The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Mol Biol 5: 153165.[Crossref] [Google Scholar]
  41. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG, , 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 48764882.[Crossref] [Google Scholar]
  42. Xia X, Xie Z, , 2001. DAMBE: data analysis in molecular biology and evolution. J Hered 92: 371373.[Crossref] [Google Scholar]
  43. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R, , 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 24962497.[Crossref] [Google Scholar]
  44. Excoffier L, Laval G, Schneider S, , 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1: 4750. [Google Scholar]
  45. Van Oosterhout C, Van Heuven MK, Brakefield PM, , 2004. On the neutrality of molecular genetic markers: pedigree analysis of genetic variation in fragmented populations. Mol Ecol 13: 10251034.[Crossref] [Google Scholar]
  46. Peakall R, Smouse PE, , 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6: 288295.[Crossref] [Google Scholar]
  47. Goudet J, , 1995. FSTAT version A computer software to calculate F-statistics. J Hered 86: 485486.[Crossref] [Google Scholar]
  48. Rousset F, , 2008. Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8: 103106.[Crossref] [Google Scholar]
  49. Holm S, , 1979. A simple sequentially rejective multiple test procedure. Scand J Stat 6: 6570. [Google Scholar]
  50. Peel D, Ovenden J, Peel S, , 2004. NeEstimator: Software for Estimating Effective Population Size. Version 1.3. Brisbane, Australia: Queensland Government, Department of Primary Industries and Fisheries. [Google Scholar]
  51. Europa-Technologies, April 2008. Google Earth 4.3. Available at: http://earth.google.es/. [Google Scholar]
  52. Dupanloup I, Schneider S, Excoffier L, , 2002. A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11: 25712581.[Crossref] [Google Scholar]
  53. Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A, , 2004. GeneClass2: a software for genetic assignment and first-generation migrant detection. J Hered 95: 536539.[Crossref] [Google Scholar]
  54. Miller M, , 1997. A Windows Program for the Analysis of Allozyme and Molecular Population Genetic Data (TFPGA). Flagstaff, AZ: Department of Biological Sciences. Northern Arizona University. [Google Scholar]
  55. Tajima F, , 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585595. [Google Scholar]
  56. Fu YX, Li WH, , 1993. Statistical tests of neutrality of mutations. Genetics 133: 693709. [Google Scholar]
  57. Fu YX, , 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915925. [Google Scholar]
  58. Clement M, Posada D, Crandall KA, , 2000. TCS: a computer program to estimate gene genealogies. Mol Ecol 9: 16571660.[Crossref] [Google Scholar]
  59. Cornuet JM, Luikart G, , 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 20012014. [Google Scholar]
  60. Huson DH, Bryant D, , 2006. Aplication of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: 254267.[Crossref] [Google Scholar]
  61. Lehr MA, Kilpatrick CW, Wilkerson RC, Conn JE, , 2005. Cryptic species in the Anopheles (Nyssorhynchus) albitarsis (Diptera: Culicidae) complex: incongruence between random amplified polymorphic DNA-polymerase chain reaction identification and analysis of mitochondrial DNA COI gene sequences. Ann Entomol Soc Am 98: 908917.[Crossref] [Google Scholar]
  62. Bryant D, Moulton V, , 2004. Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21: 255265.[Crossref] [Google Scholar]
  63. Sallum MA, Schultz TR, Foster PG, Aronstein K, Wirtz RA, Wilkerson RC, , 2002. Phylogeny of Anophelinae (Diptera: Culicidae) based on nuclear ribosomal and mitochondrial DNA sequences. Syst Entomol 27: 361382.[Crossref] [Google Scholar]
  64. Beard CB, Hamm DM, Collins FH, , 1993. The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects. Insect Mol Biol 2: 103124.[Crossref] [Google Scholar]
  65. Luikart G, Painter J, Crozier RH, Westerman M, Sherwin WB, , 1997. Characterization of microsatellite loci in the endangered long-footed potoroo Potorous longipes . Mol Ecol 6: 497498.[Crossref] [Google Scholar]
  66. Pinedo-Cancino V, Sheen P, Tarazona-Santos E, Oswald WE, Jeri C, Vittor AY, Patz JA, Gilman RH, , 2006. Limited diversity of Anopheles darlingi in the Peruvian Amazon region of Iquitos. Am J Trop Med Hyg 75: 238245. [Google Scholar]
  67. dos Santos JM, Lobo JA, Tadei W, Contel E, , 1999. Intrapopulational genetic differentiation in Anopheles (N.) darlingi Root, 1926 (Diptera: Culicidae) in the amazon region. Genet Mol Biol 22: 325331.[Crossref] [Google Scholar]
  68. Walton C, Thelwell NJ, Priestman A, Butlin RK, , 1998. The use of microsatellites to study gene flow in natural populations of Anopheles malaria vectors in Africa: potential and pitfalls. J Am Mosq Control Assoc 14: 266272. [Google Scholar]
  69. Hedrick PW, , 2005. Genetics of Populations. Sudbury, MA: Jones and Bartlett Publishers, Inc. [Google Scholar]
  70. Instituto Geográfico Agustín Codazzi, 2002. Atlas de Colombia. Publicación Institucional. Bogotá, Colombia: Imprenta Nacional de Colombia. [Google Scholar]
  71. IDEAM, 2001. El Medio Ambiente en Colombia. Bogotá, Colombia: Instituto Colombiano de Hidrología, Meteorología y Estudios Ambientales. [Google Scholar]
  72. Yasuoka J, Levins R, , 2007. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am J Trop Med Hyg 76: 450460. [Google Scholar]
  73. Castelloe J, Templeton AR, , 1994. Root probabilities for intraspecific gene trees under neutral coalescent theory. Mol Phylogenet Evol 3: 102113.[Crossref] [Google Scholar]
  74. Gutiérrez LA, Naranjo NJ, Cienfuegos AV, Muskus CE, Luckhart S, Conn JE, Correa MM, , 2009. Population structure analyses and demographic history of the malaria vector Anopheles albimanus from the Caribbean and the Pacific regions of Colombia. Malar J 8: 259.[Crossref] [Google Scholar]
  75. Manguin S, Wilkerson RC, Conn JE, Rubio-Palis Y, Danoff-Burg JA, Roberts DR, , 1999. Population structure of the primary malaria vector in South America, Anopheles darlingi, using isozyme, random amplified polymorphic DNA, internal transcribed spacer 2, and morphologic markers. Am J Trop Med Hyg 60: 364376. [Google Scholar]
  76. Brochero H, Quiñones M, , 2008. Retos de la entomología médica para la vigilancia en salud pública en Colombia: reflexión para el caso de malaria. Biomedica (Bogota) 28: 1824.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 03 Jul 2009
  • Accepted : 06 Mar 2010
  • Published online : 06 Jul 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error