Volume 83, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



is a major vector of in southern Zambia. This study aimed to determine the rate of multiple human blood meals taken by to more accurately estimate entomologic inoculation rates (EIRs). Mosquitoes were collected in four village areas over two seasons. DNA from human blood meals was extracted and amplified at four microsatellite loci. Using the three-allele method, which counts ≥ 3 alleles at any microsatellite locus as a multiple blood meal, we determined that the overall frequency of multiple blood meals was 18.9%, which was higher than rates reported for in Kenya and in Tanzania. Computer simulations showed that the three-allele method underestimates the true multiple blood meal proportion by 3–5%. Although infection status was not shown to influence the frequency of multiple blood feeding, the high multiple feeding rate found in this study increased predicted malaria risk by increasing EIR.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Gillies MT, DeMeillon B, , 1968. The Anophelinae South of the Sahara (Ethiopian Zoological Region). Johannesburg: South African Institute for Medical Research. [Google Scholar]
  2. Coetzee M, Craig M, le Sueur D, , 2000. Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitol Today 16: 7477.[Crossref] [Google Scholar]
  3. Fontenille D, Lochouarn L, Diatta M, Sokhna C, Dia I, Diagne N, Lemasson JJ, Ba K, Tall A, Rogier C, Trape JF, , 1997. Four years' entomological study of the transmission of seasonal malaria in Senegal and the bionomics of Anopheles gambiae and A. arabiensis . Trans R Soc Trop Med Hyg 91: 647652.[Crossref] [Google Scholar]
  4. Shililu JI, Maier WA, Seitz HM, Orago AS, , 1998. Seasonal density, sporozoite rates and entomological inoculation rates of Anopheles gambiae and Anopheles funestus in a high-altitude sugarcane growing zone in western Kenya. Trop Med Int Health 3: 706710.[Crossref] [Google Scholar]
  5. Mendis C, Jacobsen JL, Gamage-Mendis A, Bule E, Dgedge M, Thompson R, Cuamba N, Barreto J, Begtrup K, Sinden RE, Hogh B, , 2000. Anopheles arabiensis and An. funestus are equally important vectors of malaria in Matola coastal suburb of Maputo, southern Mozambique. Med Vet Entomol 14: 171180.[Crossref] [Google Scholar]
  6. Ijumba JN, Mosha FW, Lindsay SW, , 2002. Malaria transmission risk variations derived from different agricultural practices in an irrigated area of northern Tanzania. Med Vet Entomol 16: 2838.[Crossref] [Google Scholar]
  7. Okello PE, Van Bortel W, Byaruhanga AM, Correwyn A, Roelants P, Talisuna A, D'Alessandro U, Coosemans M, , 2006. Variation in malaria transmission intensity in seven sites throughout Uganda. Am J Trop Med Hyg 75: 219225. [Google Scholar]
  8. Kent RJ, Thuma PE, Mharakurwa S, Norris DE, , 2007. Seasonality, blood feeding behavior, and transmission of Plasmodium falciparum by Anopheles arabiensis after an extended drought in southern Zambia. Am J Trop Med Hyg 76: 267274. [Google Scholar]
  9. White GB, Magayuka SA, Boreham PFL, , 1972. Comparative studies on sibling species of the Anopheles gambiae Giles complex (Dipt., Culicidae): binomics and vectorial activity of species A and species B at Segera, Tanzania. Bull Entomol Res 62: 295317.[Crossref] [Google Scholar]
  10. Ameneshewa B, Service MW, , 1996. Resting habits of Anopheles arabiensis in the Awash River Valley of Ethiopia. Ann Trop Med Parasitol 90: 515521.[Crossref] [Google Scholar]
  11. Ralisoa Randrianasolo BO, Coluzzi M, , 1987. Genetical investigations on zoophilic and exophilic Anopheles arabiensis from Antananarivo area (Madagascar). Parassitologia 29: 9397. [Google Scholar]
  12. Larkin GL, Thuma PE, , 1991. Congenital malaria in a hyperendemic area. Am J Trop Med Hyg 45: 587592. [Google Scholar]
  13. Scott TW, Githeko AK, Fleisher A, Harrington LC, Yan G, , 2006. DNA profiling of human blood in Anophelines from lowland and highland sites in western Kenya. Am J Trop Med Hyg 75: 231237. [Google Scholar]
  14. Koella JC, Sorensen FL, Anderson RA, , 1998. The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae . Proc Bio Sci 1398: 763768.[Crossref] [Google Scholar]
  15. Soremekun S, Maxwell C, Zuwakuu M, Chen C, Michael E, Curtis C, , 2004. Measuring the efficacy of insecticide treated bed nets: the use of DNA fingerprinting to increase the accuracy of personal protection estimates in Tanzania. Trop Med Int Health 9: 663672.[Crossref] [Google Scholar]
  16. De Benedictis J, Chow-Schaffer E, Costero A, Clark GG, Edman JD, Scott TW, , 2003. Identification of the people from whom engorged Aedes aegypti took blood meals in Florida, Puerto Rico using PCR-based DNA profiling. Am J Trop Med Hyg 68: 447452. [Google Scholar]
  17. Service MW, , 1976. Mosquito Ecology: Field Sampling Methods. London: Elsevier Applied Science. [Google Scholar]
  18. Beier JC, , 2002. Vector incrimination and entomological inoculation rates. Methods Mol Med 72: 311. [Google Scholar]
  19. Sudia WD, Chamberlain RW, , 1988. Battery-operated light trap, an improved model. J Am Mosq Control Assoc 4: 536538. [Google Scholar]
  20. Gillies MT, Coetzee M, , 1987. A Supplement to the Anophelinae of Africa South of the Sahara. Johannesburg: South African Institute for Medical Research. [Google Scholar]
  21. Kent RJ, Norris DE, , 2005. Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome B. Am J Trop Med Hyg 73: 336342. [Google Scholar]
  22. Scott JA, Brogdon WG, Collins FH, , 1993. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 49: 520529. [Google Scholar]
  23. Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, Thaithong S, Brown KN, , 1993. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61: 315320.[Crossref] [Google Scholar]
  24. Fornadel CM, Norris DE, , 2008. Increased endophily by the malaria vector Anopheles arabiensis in southern Zambia and identification of digested blood meals. Am J Trop Med Hyg 79: 876880. [Google Scholar]
  25. Chemical Science and Technology Laboratory, 2009. National Institute of Standards and Technology. Overview of STR Fact Sheets. Available at: http://www.cstl.nist.gov/div831/strbase/str_fact.htm. Accessed May 1, 2009. [Google Scholar]
  26. Agresti A, Coull BA, , 1998. Approximate is better than ‘exact’ for interval estimation of binomial proportions. Am Stat 52: 119126. [Google Scholar]
  27. Chow-Shaffer E, Sina B, Hawley WA, De Benedictis J, Scott TW, , 2000. Laboratory and field evaluation of polymerase chain reaction-based forensic DNA profiling for use in identification of human blood meal sources of Aedes aegypti (Diptera: Culicidae). J Med Entomol 37: 492502.[Crossref] [Google Scholar]
  28. Gillies MT, , 1954. The recognition of age-groups within populations of Anopheles gambiae by the pre-gravid rate and the sporozoite rate. Ann Trop Med Parasitol 48: 5874.[Crossref] [Google Scholar]
  29. Gillies MT, , 1955. The pre-gravid phase of ovarian development in Anopheles funestus . Ann Trop Med Parasitol 49: 320325.[Crossref] [Google Scholar]
  30. Petrarca V, Sabatinelli G, Touré YT, Di Deco MA, , 1998. Morphometric multivariate analysis of field samples of Anopheles arabiensis and Anopheles gambiae s.s. (Diptera: Culicidae). J Med Entomol 35: 1625.[Crossref] [Google Scholar]
  31. Dye C, Hasibeder G, , 1986. Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others. Trans R Soc Trop Med Hyg 80: 6977.[Crossref] [Google Scholar]
  32. Smith DL, McKenzie FE, Snow RW, Hay SI, , 2007. Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol 5: e42.[Crossref] [Google Scholar]
  33. Mukabana WR, Takken W, Seda P, Killeen GF, Hawley WA, Knols BG, , 2002. Extent of digestions affects the success of amplifying human DNA from blood meals of Anopheles gambiae (Diptera: Culicidae). Bull Entomol Res 92: 233239.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 29 May 2009
  • Accepted : 11 Jan 2010
  • Published online : 06 Jul 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error