Volume 82, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



We studied the effect of environmental parameters on the survival of . There was a small increase in bacterial count for up to 28 days in sterilized distilled water or rain water, in water at 20°C or 40°C, and in buffered solutions of pH 4 or higher. Counts of culturable declined at pH 3, in the presence of seawater or water with concentrations of 4% salt or higher, and under refrigeration. The morphological appearances of changed under conditions that maintained culturable numbers from bacilli to coccoid cells and spiral forms under pH or salt stress. These observations indicate that can endure nutrient-depleted environments as well as a wide range of pH, salt concentrations, and temperatures for periods of up to 28 days. The relative stability of under these conditions underlines the tenacity of this species and its potential for natural dispersal in water: in surface water collections, in managed water distribution systems, and through rainfall. These survival properties help explain the recent expansion of the known melioidosis endemic zone in Australia and may have played a part in recent melioidosis outbreaks.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Currie BJ, Mayo M, Anstey NM, Donohoe P, Haase A, Kemp DJ, , 2001. A cluster of melioidosis cases from an endemic region is clonal and is linked to the water supply using molecular typing of Burkholderia pseudomallei isolates. Am J Trop Med Hyg 65: 177179. [Google Scholar]
  2. Inglis TJ, Garrow SC, Henderson M, Clair A, Sampson J, O'Reilly L, Cameron B, , 2000. Burkholderia pseudomallei traced to water treatment plant in Australia. Emerg Infect Dis 6: 5659. [Google Scholar]
  3. Howard K, Inglis TJ, , 2003. The effect of free chlorine on Burkholderia pseudomallei in potable water. Water Res 37: 44254432.[Crossref] [Google Scholar]
  4. Howard K, Inglis TJJ, , 2005. Disinfection of Burkholderia pseudomallei in potable water. Water Res 39: 10851092.[Crossref] [Google Scholar]
  5. Inglis TJ, Sagripanti JL, , 2006. Environmental factors that affect survival and persistence of Burkholderia pseudomallei . Appl Environ Microbiol 72: 68656875.[Crossref] [Google Scholar]
  6. Tong S, Yang S, Lu Z, He W, , 1996. Laboratory investigation of ecological factors influencing the environmental presence of Burkholderia pseudomallei . Microbiol Immunol 40: 451453.[Crossref] [Google Scholar]
  7. Wuthiekanun V, Smith MD, White NJ, , 1995. Survival of Burkholderia pseudomallei in the absence of nutrients. Trans R Soc Trop Med Hyg 89: 491.[Crossref] [Google Scholar]
  8. Shams AM, Rose LJ, Hodges L, Arduino MJ, , 2007. Survival of Burkholderia pseudomallei on environmental surfaces. Appl Environ Microbiol 73: 80018004.[Crossref] [Google Scholar]
  9. Finkelstein RA, Atthasampunna P, Chulasamaya M, , 2000. Pseudomonas (Burkholderia) pseudomallei in Thailand, 1964–1967: geographic distribution of the organism, attempts to identify cases of active infection, and presence of antibody in representative sera. Am J Trop Med Hyg 62: 232239. [Google Scholar]
  10. Liao CH, Shollenberger LM, , 2003. Survivability and long-term preservation of bacteria in water and in phosphate-buffered saline. Lett Appl Microbiol 37: 4550.[Crossref] [Google Scholar]
  11. Inglis TJ, Garrow SC, Adams C, Henderson M, Mayo M, , 1998. Dry-season outbreak of melioidosis in Western Australia. Lancet 352: 1600.[Crossref] [Google Scholar]
  12. Inglis T, Mee B, Chang B, , 2001. The environmental microbiology of melioidosis. Rev Med Microbiol 12: 1320.[Crossref] [Google Scholar]
  13. Rolim DB, , 2005. Melioidosis, northeastern Brazil. Emerg Infect Dis 11: 14581460.[Crossref] [Google Scholar]
  14. Inglis TJ, Garrow SC, Adams C, Henderson M, Mayo M, Currie BJ, , 1999. Acute melioidosis outbreak in western Australia. Epidemiol Infect 123: 437443.[Crossref] [Google Scholar]
  15. Collee JG, Duguid JP, Fraser AG, Marmion BP, , 1989. pH measurements and buffers, oxidation-reduction potentials, suspension fluids and preparation of glassware. Practical Medical Microbiology, 13th Edition. Edinburgh: Churchill Livingstone, 9099. [Google Scholar]
  16. Young KD, , 2006. The selective value of bacterial shape. Microbiol Mol Biol Rev 70: 660703.[Crossref] [Google Scholar]
  17. Sagripanti JL, Carrera M, Robertson JN, Levy A, Inglis TJJ, , 2007. Size distribution of Burkholderia pseudomallei. Proceedings of the 5th World Melioidosis Congress, November 2007; Khon Kaen, Thailand. [Google Scholar]
  18. Lamothe J, Thyssen S, Valvano MA, , 2004. Burkholderia cepacia complex isolates survive intracellularly without replication within acidic vacuoles of Acanthamoeba polyphaga . Cell Microbiol 6: 11271138.[Crossref] [Google Scholar]
  19. Kanai K, Kondo E, Dejsirilert S, Naigowit P, Puthucheary SD, Malik MA, , 1994. Growth and survival of Pseudomonas pseudomallei in acidic environment with possible relation to the ecology and epidemiology of melioidosis. , eds. Melioidosis—Prevailing Problems and Future Directions. Kuala Lumpur, Malaysia: Malaysian Society of Infectious Diseases and Chemotherapy, 2638. [Google Scholar]
  20. Redfearn MS, Palleroni NJ, Stanier RY, , 1966. A comparative study of Pseudomonas pseudomallei and Bacillus mallei . J Gen Appl Microbiol 43: 293313.[Crossref] [Google Scholar]
  21. Currie B, Smith-Vaughan H, Golledge C, Buller N, Sriprakash KS, Kemp DJ, , 1994. Pseudomonas pseudomallei isolates collected over 25 years from a non-tropical endemic focus show clonality on the basis of ribotyping. Epidemiol Infect 113: 307312.[Crossref] [Google Scholar]
  22. Roszak DB, Colwell RR, , 1987. Survival strategies of bacteria in the natural environment. Microbiol Mol Biol Rev 51: 365379. [Google Scholar]
  23. Xu H-S, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR, , 1983. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb Ecol 8: 313324.[Crossref] [Google Scholar]
  24. Berney M, Hammes F, Bosshard F, Weilenmann H-U, Egli T, , 2007. Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl Environ Microbiol 73: 32833290.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 29 Apr 2009
  • Accepted : 01 Oct 2009
  • Published online : 05 Jan 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error