Volume 82, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Mosquito-borne pathogen transmission exhibits spatial-temporal variability caused by ecological interactions acting at different scales. We used local spatial statistics and geographically weighted regression (GWR) to determine the spatial pattern of malaria incidence and persistence in northeastern Venezuela. Seven to 11 hot spots of malaria transmission were detected by using local spatial statistics, although disease persistence was explained only for four of those hot spots. The GWR models greatly improved predictions of malaria risk compared with ordinary least squares (OLS) regression models. Malaria incidence was largely explained by the proximity to and number of habitats nearby (1–3 km), and low-elevation terrains. Disease persistence was associated with greater human population density, lower elevations, and proximity to aquatic habitats. However, there was significant local spatial variation in the relationship between malaria and environmental variables. Spatial modeling improves the understanding of the causal factors operating at several scales in the transmission of malaria.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 2008. World Malaria Report 2008. Geneva: World Health Organization. [Google Scholar]
  2. Macdonald G, , 1957. The Epidemiology and Control of Malaria. London: Oxford University Press. [Google Scholar]
  3. Barrera R, Grillet ME, Rangel Y, Berti J, Aché A, , 1999. Temporal and spatial patterns of malaria reinfection in north-eastern Venezuela. Am J Trop Med Hyg 61: 784790. [Google Scholar]
  4. Smith DL, McKenzie FE, Snow RW, Hay SI, , 2007. Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol 5: 05310542. [Google Scholar]
  5. Carter R, Mendis KN, Roberts D, , 2000. Spatial targeting of interventions against malaria. Bull W Health Org 78: 14011411. [Google Scholar]
  6. Ostfeld RS, Glass GE, Keesing F, , 2005. Spatial epidemiology: an emerging (or re-emerging) discipline. Trends Ecol Evol 20: 328336.[Crossref] [Google Scholar]
  7. Pavlovsky EN, , 1966. The Natural Nidality of Transmissible Disease. Urbana: University of Illinois Press. [Google Scholar]
  8. Kitron U, , 1998. Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. J Med Entomol 35: 435445.[Crossref] [Google Scholar]
  9. Real LA, Biek B, , 2007. Spatial dynamics and genetic of infectious diseases on heterogeneous landscapes. J R Soc Interface 4: 935948.[Crossref] [Google Scholar]
  10. Fortin MJ, Dale MRT, , 2005. Spatial Analysis: A Guide for Ecologists. New York: Cambridge University Press. [Google Scholar]
  11. Legendre P, , 1993. Spatial autocorrelation: problem or new paradigm? Ecology 74: 16591673.[Crossref] [Google Scholar]
  12. Clennon JA, King CH, Muchiri EM, Kariuki HC, Ouma JH, Mungai P, Kitron U, , 2004. Spatial patterns of urinary schistosomiasis infection in a highly endemic area of coastal Kenya. Am J Trop Med Hyg 70: 443448. [Google Scholar]
  13. Kleinschmidt I, Bagayoko M, Clarke GPY, Craig M, Le Sueur D, , 2000. A spatial statistical approach to malaria mapping. Int J Epidemiol 29: 355361.[Crossref] [Google Scholar]
  14. Kleinschmidt I, Sharp BL, Clarke GPY, Curtis B, Fraser C, , 2001. Use of generalized linear mixed models in the spatial analysis of small-area malaria incidence rates in KwaZulu Natal, South Africa. Am J Epidemiol 153: 12131221.[Crossref] [Google Scholar]
  15. Getis A, Ord JK, , 1992. The analysis of spatial association by use of distance statistics. Geogr Anal 24: 189206.[Crossref] [Google Scholar]
  16. Fotheringham AS, Brunsdon C, Charlton M, , 2002. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. Chichester, UK: John Wiley and Sons. [Google Scholar]
  17. Rubio-Palis Y, Zimmerman RH, , 1997. Ecoregional classification of malaria vectors in the neotropics. J Med Entomol 34: 499510.[Crossref] [Google Scholar]
  18. Berti J, Zimmerman R, Amarista J, , 1993. Adult abundance, biting behavior and parity of Anopheles aquasalis Curry 1932 in two malarious areas of Sucre state, Venezuela. Mem Inst Oswaldo Cruz 88: 363369.[Crossref] [Google Scholar]
  19. Cáceres JL, , 2008. Malaria antes y después de la cura radical masiva en el estado Sucre, Venezuela. Bol Dir Malariol San Amb 48: 8390. [Google Scholar]
  20. Grillet ME, , 2000. Environmental factors associated with the spatial and temporal distribution of Anopheles aquasalis and Anopheles oswaldoi in wetlands of an endemic malaric area in north-eastern Venezuela. J Med Entomol 37: 231238.[Crossref] [Google Scholar]
  21. Pérez H, , 2004. El Paludismo por Plasmodium vivax y los desafíos del tratamiento adecuado y oportuno. Bol Dir Malariol San Amb 44: 18. [Google Scholar]
  22. Szklo M, Nieto FJ, , 2007. Epidemiology: Beyond the Basics. Gaithersburg, MD: Aspen Publishers, Inc. [Google Scholar]
  23. Berti J, Zimmerman R, Amarista J, , 1993. Spatial and temporal distribution of anopheline larvae in two malarious areas in Sucre State, Venezuela. Mem Inst Oswaldo Cruz 88: 353362.[Crossref] [Google Scholar]
  24. Kulldorff M, , 1997. A spatial scan statistic. Comm Statist Theory Methods 26: 14811496.[Crossref] [Google Scholar]
  25. Getis A, Ord JK, , 1995. Local spatial autocorrelation statistics: distributional issues and an application. Geogr Anal 27: 286306. [Google Scholar]
  26. Waller AW, Gotway CA, , 2004. Applied Spatial Statistics for Public Health Data. Hoboken, NJ: John Wiley & Sons, Inc.[Crossref] [Google Scholar]
  27. Bolker BB, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JS, , 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24: 127135.[Crossref] [Google Scholar]
  28. Ihaka R, Gentleman R, , 1996. R: a language for data analysis and graphics. J Comput Graph Statist 5: 299314. [Google Scholar]
  29. Rejmankova E, Roberts DR, Pawley A, Manguin S, Polanco J, , 1995. Predictions of adult Anopheles albimanus densities in villages based on distances to remotely-sensed larval habitats. Am J Trop Med Hyg 53: 482488. [Google Scholar]
  30. Le Menach A, McKenzie FE, Flahault A, Smith DL, , 2005. The unexpected importance of mosquito oviposition behavior for malaria: non-productive larval habitats can be sources for malaria transmission. Malar J 4: 111.[Crossref] [Google Scholar]
  31. Ernst KC, Adoka SO, Kowuor DO, Wilson ML, John CC, , 2006. Malaria hotspot areas in a highland Kenya site are consistent in epidemic and non-epidemic years and are associated with ecological factors. Malar J 5: 110.[Crossref] [Google Scholar]
  32. Bøgh C, Lindsay SW, Clarke SE, Dean A, Jawara M, Pinder M, Thomas CJ, , 2007. High spatial resolution mapping of malaria transmission risk in the Gambia, West Africa, using landsat TM satellite imagery. Am J Trop Med Hyg 76: 875881. [Google Scholar]
  33. Trape JF, Lefebvrezante E, Legros F, Ndiaye G, Bouganali H, Druilhe P, Salem G, , 1992. Vector density gradients and the epidemiology of urban malaria in Dakar, Senegal. Am J Trop Med Hyg 47: 181189. [Google Scholar]
  34. Barrera R, Grillet ME, Rangel Y, Berti J, Aché A, , 1998. Estudio eco-epidemiológico de la reintroducción de malaria en el nororiente de Venezuela mediante Sistemas de Información Geográfica y Sensores Remotos. Bol Dir Malariol San Amb 38: 1430. [Google Scholar]
  35. Cova-Garcia P, , 1961. Notas Sobre los Anofelinos de Venezuela y su Identificación . Caracas, Venezuela: Editorial Grafos.
  36. Service MW, , 1997. Mosquito (Diptera: Culicidae) dispersal–the long and short of it. J Med Entomol 34: 579588.[Crossref] [Google Scholar]
  37. Costantini C, Li SG, DellaTorre A, Sagnon N, Coluzzi M, Taylor CE, , 1996. Density, survival and dispersal of Anopheles gambiae complex mosquitoes in a West African Sudan savannah village. Med Vet Entomol 10: 203219.[Crossref] [Google Scholar]
  38. Thomson MC, Connor SJ, Quinones ML, Jawara M, Todd J, Greenwood BM, , 1995. Movement of Anopheles gambiae s.l. malaria vectors between villages in The Gambia. Med Vet Entomol 9: 413419.[Crossref] [Google Scholar]
  39. Clarke SE, Bøgh C, Brown RC, Walraven GEL, Thomas CJ, Lindsay SW, , 2002. Risk of malaria attacks in Gambian children is greater away from malaria vector breeding sites. Trans R Soc Trop Med Hyg 96: 499506.[Crossref] [Google Scholar]
  40. Anderson RM, May RM, , 1992. Infectious Diseases of Humans: Dynamics and Control. Oxford, UK: Oxford University Press. [Google Scholar]
  41. Grenfell BT, Harwood J, , 1997. Metapopulation dynamics of infectious diseases. Trends Ecol Evol 12: 395399.[Crossref] [Google Scholar]
  42. Woolhouse ME, Dye C, Etard JF, Smith T, Charlwood JD, Garnett GP, Hagen P, Hii JLK, Ndhlovu PD, Quinnell RJ, Watts CH, Chandiwana SK, Anderson RM, , 1997. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci USA 94: 338342.[Crossref] [Google Scholar]
  43. Greenwood BM, , 2008. Control to elimination: implications for malaria research. Trends Parasitol 24: 449454.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 21 Jan 2009
  • Accepted : 31 Oct 2009
  • Published online : 05 Feb 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error