Volume 82, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



II is associated with Chagas disease in the southern part of South America. We analyzed variants in field-collected triatomines and congenitally infected infants living in the same disease-endemic region in Paraguay. Results of polymerase chain reactions for kinetoplast DNA and satellite DNA were positive in 83 triatomine feces samples and 58 infant blood samples. However, lineages were detected in 33 and 38 samples, respectively. genotypes were determined in 56 (97%) blood samples after hybridization by using specific probes. The Tc I genotype was not detected. The prevalent sublineage was Tc IId in triatomines (27 of 33) and infant blood (36 of 58) as assessed by amplification of the 24Sα ribosomal RNA and the mini-exon region genes. The Tc IIc genotype was detected in 20 infant blood samples and in 1 triatomine. This study shows II is the predominant lineage circulating in triatomines and humans in endemic areas of eastern region of Paraguay.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 2002. Control of Chagas disease: second report of a WHO expert committee. World Health Organ Tech Rep Ser 905: 1109. [Google Scholar]
  2. Russomando G, Almirón M, Candia N, Franco L, Sánchez Z, de Guillen I, , 2005. Implementation and evaluation of a locally sustainable system of prenatal diagnosis to detect cases of congenital Chagas disease in endemic areas of Paraguay. Rev Soc Bras Med Trop 2: 4954. [Google Scholar]
  3. Souto R, Fernandez O, Macedo A, Campbell D, Zingales B, , 1996. DNA markers define two major phylogenetic lineages of Trypanosoma cruzi . Mol Biochem Parasitol 83: 141152.[Crossref] [Google Scholar]
  4. Nunes LR, de Carvalho MR, Buck GA, , 1997. Trypanosoma cruzi strains partition into two groupsbased on the structure and function of the spliced leader RNA and rRNA gene promoters. Mol Biochem Parasitol 2: 211224.[Crossref] [Google Scholar]
  5. Zingales B, Souto RP, Mangia RH, Lisboa CV, Campbell DA, Coura JR, Jansen A, Fernandes O, , 1998. Molecular epidemiology of American trypanosomiasis in Brazil based on dimorphisms of rRNA and mini-exon gene sequences. Int J Parasitol 1: 105112.[Crossref] [Google Scholar]
  6. Brisse S, Verhoef J, Tibayrenc M, , 2001. Characterisation of large and small subunit rRNA and mini-exon genes further supports the distinction of six Trypanosoma cruzi lineages. Int J Parasitol 11: 12181226.[Crossref] [Google Scholar]
  7. Brisse S, Henriksson J, Barnabé C, Douzery EJ, Berkvens D, Serrano M, De Carvallo MR, Buck GA, Dujardin JC, Tibayrenc M, , 2003. Evidence for genetic exchange and hybridization in Trypanosoma cruzi based on nucleotide sequences and molecular karyotype. Infect Genet Evol 2: 173183.[Crossref] [Google Scholar]
  8. Buscaglia CA, Di Noia JM, , 2003. Trypanosoma cruzi clonal diversity and the epidemiology of Chagas' disease. Microbes Infect 5: 419427.[Crossref] [Google Scholar]
  9. Fernandes O, Souto RP, Castro JA, Pereira JB, Fernandes NC, Junqueira AC, Naiff RD, Barrett TV, Degrave W, Zingales B, Campbell DA, Coura JR, , 1998. Brazilian isolates of Trypanosoma cruzi from humans and triatomines classified into two lineages using mini-exon and ribosomal RNA sequences. Am J Trop Med Hyg 6: 807811. [Google Scholar]
  10. Breniere SF, Bosseno MF, Tellería J, Carrasco R, Vargas F, Yasick N, Noireau F, Alcaraz JL, Barnabé C, Wincker P, Tibayrenc M, , 1998. Different behaviour of two Trypanosoma cruzi major clones: transmission and circulation young Bolivian patients. Exp Parasitol 89: 285295.[Crossref] [Google Scholar]
  11. Briones MRS, Souto RP, Sotlf BS, Zingales B, , 1999. The evolution of two Trypanosoma cruzi inferred from rRNA genes can be correlated with the interchange of American mammalian faunas in the Cenozoic and has implications to pathogenicity and host specificity. Mol Biochem Parasitol 104: 219232.[Crossref] [Google Scholar]
  12. Risso MG, Garbarino GB, Mocetti E, Campetella O, Gonzalez Cappa SM, Buscaglia CA, Leguizamon MS, , 2004. Differential expression of a virulence factor, the trans-sialidase, by the main Trypanosoma cruzi phylogenetic lineages. J Infect Dis 189: 22502259.[Crossref] [Google Scholar]
  13. Teixeira MM, da Silva FM, Marcili A, Umezawa ES, Shikanai-Yasuda MA, Cunha-Neto E, Kalil J, Stolf N, Stolf AM, , 2006. Short communication: Trypanosoma cruzi lineage I in endomyocardial biopsy from a north-eastern Brazilian patient at end-stage chronic Chagasic cardiomyopathy. Trop Med Int Health 11: 294298.[Crossref] [Google Scholar]
  14. Yeo M, Acosta N, Llewellyn M, Sanchez H, Adamson S, Miles GA, Lopez E, Gonzalez N, Patterson JS, Gaunt MW, de Arias AR, Miles MA, , 2005. Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. Int J Parasitol 35: 225233.[Crossref] [Google Scholar]
  15. Marcet PL, Duffy T, Cardinal MV, Burgos JM, Lauricella MA, Levin MJ, Kitron U, Gürtler RE, Schijman AG, , 2006. PCR-based screening and lineage identification of Trypanosoma cruzi directly from faecal samples of triatomine bugs from northwestern Argentina. Parasitol 132: 5765.[Crossref] [Google Scholar]
  16. Rojas de Arias A, Russomando G, , 2002. El control de la enfermedad de Chagas del Paraguay. El Control de la Enfermedad de Chagas en los Países del Cono Sur de América. Historia de Una Iniciativa Internacional. 1991/2001. Washington, DC: Pan American Health Organization, 269300. [Google Scholar]
  17. Sambrook J, Russell DW, , 2001. Molecular Cloning. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press, 6.236.27. [Google Scholar]
  18. Degrave W, Fragoso SP, Britto C, van Heuverswyn H, Kidane GZ, Cardoso MA, Mueller RU, Simpson L, Morel CM, , 1988. Peculiar sequence organization of kinetoplast DNA minicircles from Trypanosoma cruzi . Mol Biochem Parasitol 27: 6370.[Crossref] [Google Scholar]
  19. Russomando G, Carpinelli de Tomassone MM, Guillen I, Acosta N, Vera N, Almirón M, Candia N, Calcena MF, Figueredo A, , 1998. Treatment of congenital Chagas' disease diagnosed and followed up by polymerase chain reaction. Am J Trop Med Hyg 59: 487491. [Google Scholar]
  20. Moser DR, Kirchhoff LV, Donelson JE, , 1989. Detection of Trypanosoma cruzi by DNA amplification using the polymerase chain reaction. J Clin Microbiol 7: 14771482. [Google Scholar]
  21. Russomando G, Figueredo A, Almirón M, Sakamoto M, Morita K, , 1992. Polymerase chain reaction-based detection of Trypanosoma cruzi DNA in serum. J Clin Microbiol 28642868. [Google Scholar]
  22. Souto JR, Zingales B, , 1993. Sensitive detection and strain classification of Trypanosoma cruzi by amplification of a ribosomal RNA sequence. Mol Biochem Parasitol 62: 4552.[Crossref] [Google Scholar]
  23. Virreira M, Truyens C, Alonso-Vega C, Brutus L, Jijena J, Torrico F, Carlier Y, Svoboda M, , 2007. Comparison of Trypanosoma cruzi lineages and levels of parasitic DNA in infected mothers and their newborns. Am J Trop Med Hyg 1: 102106. [Google Scholar]
  24. Burgos JM, Altcheh J, Bisio M, Duffy T, Valadares HM, Seidenstein ME, Piccinali R, Freitas JM, Levin MJ, Macchi L, Macedo AM, Freilij H, Schijman AG, , 2007. Direct molecular profiling of minicircle signatures and lineages of Trypanosoma cruzi bloodstream populations causing congenital Chagas disease. Int J Parasitol 12: 13191327.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 05 Jan 2009
  • Accepted : 02 Dec 2009
  • Published online : 05 Mar 2010

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error