Volume 81, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Human African trypanosomiasis is a neglected disease caused by spp. A parasite cation pump (Ca ATPase; TBCA2) essential for survival and cation homeostasis was identified and characterized. It was hypothesized that targeting this pump using a ghost (VCG)-based vaccine could protect against murine infection. mRNA and protein expression of TBCA2 was differentially expressed in blood and insect stages of parasites and immunolocalized in the pericellular membrane and the flagellar pocket of bloodstream forms. Antigen-specific antibodies and Th1 cytokines, interleukin-2, interferon-gamma, and tumor necrosis factor-alpha were induced in rVCG-TBCA2-immunized mice and on antigen stimulation of splenic immune T cells, but the corresponding Th2-type response was unremarkable. Despite an increased median survival of 6 days in vaccinated mice, the mice were not protected against infection. Thus, immunization of mice produced robust parasite-specific antibodies but failed to protect mice against parasite challenge.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Fevre EM, Picozzi K, Jannin J, Welburn SC, Maudlin I, 2006. Human African trypanosomiasis. Epidemiol Control 61 : 167–221. [Google Scholar]
  2. Bouteille B, Oukem O, Bisser S, Dumas M, 2003. Treatment perspectives for human African trypanosomiasis. Fundam Clin Pharmacol 17 : 171–181. [Google Scholar]
  3. Fraser-L’Hostis C, frise-Quertain F, Coral D, Deshusses J, 1997. Regulation of the intracellular pH in the protozoan parasite Trypanosoma brucei brucei. Biol Chem 378 : 1039–1046. [Google Scholar]
  4. Benaim G, Lopez-Estrano C, Docampo R, Moreno SN, 1993. A calmodulin-stimulated Ca2+ pump in plasma-membrane vesicles from Trypanosoma brucei; selective inhibition by pentamidine. Biochem J 296 : 759–763. [Google Scholar]
  5. Docampo R, Gadelha FR, Moreno SN, Benaim G, Hoffmann ME, Vercesi AE, 1993. Disruption of Ca2+ homeostasis in Trypanosoma cruzi by crystal violet. J Eukaryot Microbiol 40 : 311–316. [Google Scholar]
  6. Vercesi AE, Moreno SN, Bernardes CF, Meinicke AR, Fernandes EC, Docampo R, 1993. Thapsigargin causes Ca2+ release and collapse of the membrane potential of Trypanosoma brucei mitochondria in situ and of isolated rat liver mitochondria. J Biol Chem 268 : 8564–8568. [Google Scholar]
  7. Catisti R, Uyemura SA, Docampo R, Vercesi AE, 2000. Calcium mobilization by arachidonic acid in trypanosomatids. Mol Biochem Parasitol 105 : 261–271. [Google Scholar]
  8. Parsons M, Ruben L, 2000. Pathways involved in environmental sensing in trypanosomatids. Parasitol Today 16 : 56–62. [Google Scholar]
  9. Lu HG, Zhong L, de Souza W, Benchimol M, Moreno S, Docampo R, 1998. Ca2+ content and expression of an acidocalcisomal calcium pump are elevated in intracellular forms of Trypanosoma cruzi. Mol Cell Biol 18 : 2309–2323. [Google Scholar]
  10. Luo S, Ruiz FA, Moreno SN, 2005. The acidocalcisome Ca2+-ATPase (TgA1) of Toxoplasma gondii is required for polyphosphate storage, intracellular calcium homeostasis and virulence. Mol Microbiol 55 : 1034–1045. [Google Scholar]
  11. Moreno SN, Docampo R, Vercesi AE, 1992. Calcium homeostasis in procyclic and bloodstream forms of Trypanosoma brucei. Lack of inositol 1,4,5-trisphosphate-sensitive Ca2+ release. J Biol Chem 267 : 6020–6026. [Google Scholar]
  12. Nolan DP, Reverlard P, Pays E, 1994. Overexpression and characterization of a gene for a Ca(2+)-ATPase of the endoplasmic reticulum in Trypanosoma brucei. J Biol Chem 269 : 26045–26051. [Google Scholar]
  13. Luo S, Rohloff P, Cox J, Uyemura SA, Docampo R, 2004. Trypanosoma brucei plasma membrane-type Ca(2+)-ATPase 1 (TbPMC1) and 2 (TbPMC2) genes encode functional Ca(2+)-ATPases localized to the acidocalcisomes and plasma membrane, and essential for Ca(2+) homeostasis and growth. J Biol Chem 279 : 14427–14439. [Google Scholar]
  14. Walter RD, Opperdoes FR, 1982. Subcellular distribution of ade-nylate cyclase, cyclic-AMP phosphodiesterase, protein kinases and phosphoprotein phosphatase in Trypanosoma brucei. Mol Biochem Parasitol 6 : 287–295. [Google Scholar]
  15. Coppens I, Opperdoes FR, Courtoy PJ, Baudhuin P, 1987. Receptor-mediated endocytosis in the bloodstream form of Trypanosoma brucei. J Protozool 34 : 465–473. [Google Scholar]
  16. Coppens I, Baudhuin P, Opperdoes FR, Courtoy PJ, 1988. Receptors for the host low density lipoproteins on the hemofla-gellate Trypanosoma brucei: purification and involvement in the growth of the parasite. Proc Natl Acad Sci USA 85 : 6753–6757. [Google Scholar]
  17. Stijlemans B, Conrath K, Cortez-Retamozo V, Van Xong H, Wyns L, Senter P, Revets H, De Baetselier P, Muyldermans S, Magez S, 2004. Efficient targeting of conserved cryptic epitopes of infectious agents by single domain antibodies. African trypanosomes as paradigm. J Biol Chem 279 : 1256–1261. [Google Scholar]
  18. Olenick JG, Wolff R, Nauman RK, McLaughlin J, 1988. A flagellar pocket membrane fraction from Trypanosoma brucei rhodesiense: immunogold localization and nonvariant immunoprotection. Infect Immun 56 : 92–98. [Google Scholar]
  19. McLaughlin J, 1987. Trypanosoma rhodesiense: antigenicity and immunogenicity of flagellar pocket membrane components. Exp Parasitol 64 : 1–11. [Google Scholar]
  20. Hamadien M, Lycke N, Bakhiet M, 1999. Induction of the trypanosome lymphocyte-triggering factor (TLTF) and neutralizing antibodies to the TLTF in experimental african trypanosomiasis. Immunology 96 : 606–611. [Google Scholar]
  21. Stiles JK, Kucerova Z, Sarfo B, Meade CA, Thompson W, Shah P, Xue L, Meade JC, 2003. Identification of surface-membrane P-type ATPases resembling fungal K(+)- and Na(+)-ATPases, in Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani. Ann Trop Med Parasitol 97 : 351–366. [Google Scholar]
  22. Marchesini N, Luo S, Rodrigues CO, Moreno SN, Docampo R, 2000. Acidocalcisomes and a vacuolar H+-pyrophosphatase in malaria parasites. Biochem J 347 : 243–253. [Google Scholar]
  23. Stojdl DF, Clarke MW, 1996. Trypanosoma brucei: analysis of cytoplasmic Ca2+ during differentiation of bloodstream stages in vitro. Exp Parasitol 83 : 134–146. [Google Scholar]
  24. Uhlemann AC, Cameron A, Eckstein-Ludwig U, Fischbarg J, Iserovich P, Zuniga FA, East M, Lee A, Brady L, Haynes RK, Krishna S, 2005. A single amino acid residue can determine the sensitivity of SERCAs to artemisinins. Nat Struct Mol Biol 12 : 628–629. [Google Scholar]
  25. Eko FO, Lubitz W, McMillan L, Ramey K, Moore TT, Ananaba GA, Lyn D, Black CM, Igietseme JU, 2003. Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine 21 : 1694–1703. [Google Scholar]
  26. Gomes YM, Carvalho AB, Santos ML, Cavalcanti VM, Monjour L, 1992. Isolation of Trypanosoma cruzi from blood by histopaque and continuous percoll gradient centrifugations. Appl Biochem Biotechnol 33 : 183–192. [Google Scholar]
  27. Alonso G, Guevara P, Ramirez JL, 1992. Trypanosomatidae codon usage and GC distribution. Mem Inst Oswaldo Cruz 87 : 517–523. [Google Scholar]
  28. Fagan MJ, Saier MH Jr, 1994. P-type ATPases of eukaryotes and bacteria: sequence analyses and construction of phylogenetic trees. J Mol Evol 38 : 57–99. [Google Scholar]
  29. Moller JV, Juul B, Le Maire M, 1996. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta 1286 : 1–51. [Google Scholar]
  30. Deflorin J, Rudolf M, Seebeck T, 1994. The major components of the paraflagellar rod of Trypanosoma brucei are two similar, but distinct proteins which are encoded by two different gene loci. J Biol Chem 269 : 28745–28751. [Google Scholar]
  31. Trebak M, Chong JM, Herlyn D, Speicher DW, 1999. Efficient laboratory-scale production of monoclonal antibodies using membrane-based high-density cell culture technology. J Immunol Methods 230 : 59–70. [Google Scholar]
  32. Stiles JK, Meade JC, Kucerova Z, Lyn D, Thompson W, Zakeri Z, Whittaker J, 2001. Trypanosoma brucei infection induces apoptosis and up-regulates neuroleukin expression in the cerebellum. Ann Trop Med Parasitol 95 : 797–810. [Google Scholar]
  33. Thompson WE, Powell JM, Whittaker JA, Sridaran R, Thomas KH, 1999. Immunolocalization and expression of prohibitin, a mitochondrial associated protein within the rat ovaries. Anat Rec 256 : 40–48. [Google Scholar]
  34. Thompson WE, Branch A, Whittaker JA, Lyn D, Zilberstein M, Mayo KE, Thomas K, 2001. Characterization of prohibitin in a newly established rat ovarian granulosa cell line. Endocrinology 142 : 4076–4085. [Google Scholar]
  35. Szostak M, Wanner G, Lubitz W, 1990. Recombinant bacterial ghosts as vaccines. Res Microbiol 141 : 1005–1007. [Google Scholar]
  36. Eko FO, Witte A, Huter V, Kuen B, Furst-Ladani S, Haslberger A, Katinger A, Hensel A, Szostak MP, Resch S, Mader H, Raza P, Brand E, Marchart J, Jechlinger W, Haidinger W, Lubitz W, 1999. New strategies for combination vaccines based on the extended recombinant bacterial ghost system. Vaccine 17 : 1643–1649. [Google Scholar]
  37. Eko FO, Szostak MP, Wanner G, Lubitz W, 1994. Production of Vibrio cholerae ghosts (VCG) by expression of a cloned phage lysis gene: potential for vaccine development. Vaccine 12 : 1231–1237. [Google Scholar]
  38. Mermod N, Ramos JL, Lehrbach PR, Timmis KN, 1986. Vector for regulated expression of cloned genes in a wide range of gram-negative bacteria. J Bacteriol 167 : 447–454. [Google Scholar]
  39. Eko FO, Hensel A, Bunka S, Lubitz W, 1994. Immunogenicity of Vibrio cholerae ghosts following intraperitoneal immunization of mice. Vaccine 12 : 1330–1334. [Google Scholar]
  40. Duleu S, Vincendeau P, Courtois P, Semballa S, Lagroye I, Daulouede S, Boucher JL, Wilson KT, Veyret B, Gobert AP, 2004. Mouse strain susceptibility to trypanosome infection: an arginase-dependent effect. J Immunol 172 : 6298–6303. [Google Scholar]
  41. Igietseme JU, Uriri IM, Kumar SN, Ananaba GA, Ojior OO, Momodu IA, Candal DH, Black CM, 1998. Route of infection that induces a high intensity of gamma interferon-secreting T cells in the genital tract produces optimal protection against Chlamydia trachomatis infection in mice. Infect Immun 66 : 4030–4035. [Google Scholar]
  42. Bonay P, Duran-Chica I, Fresno M, Alarcon B, Alcina A, 1998. Antiparasitic effects of the intra-Golgi transport inhibitor meg-alomicin. Antimicrob Agents Chemother 42 : 2668–2673. [Google Scholar]
  43. Harris TH, Mansfield JM, Paulnock DM, 2007. CpG oligodeoxy-nucleotide treatment enhances innate resistance and acquired immunity to African trypanosomes. Infect Immun 75 : 2366–2373. [Google Scholar]
  44. Pays E, Vanhamme L, Perez-Morga D, 2004. Antigenic variation in Trypanosoma brucei: facts, challenges and mysteries. Curr Opin Microbiol 7 : 369–374. [Google Scholar]
  45. McCulloch R, 2004. Antigenic variation in African trypanosomes: monitoring progress. Trends Parasitol 20 : 117–121. [Google Scholar]
  46. Mkunza F, Olaho WM, Powell CN, 1995. Partial protection against natural trypanosomiasis after vaccination with a flagellar pocket antigen from Trypanosoma brucei rhodesiense. Vaccine 13 : 151–154. [Google Scholar]
  47. Luhrs KA, Fouts DL, Manning JE, 2003. Immunization with recombinant paraflagellar rod protein induces protective immunity against Trypanosoma cruzi infection. Vaccine 21 : 3058–3069. [Google Scholar]
  48. Magez S, Lucas R, Darji A, Songa EB, Hamers R, De BP, 1993. Murine tumour necrosis factor plays a protective role during the initial phase of the experimental infection with Trypanosoma brucei brucei. Parasite Immunol 15 : 635–641. [Google Scholar]
  49. Magez S, Radwanska M, Beschin A, Sekikawa K, De BP, 1999. Tumor necrosis factor alpha is a key mediator in the regulation of experimental Trypanosoma brucei infections. Infect Immun 67 : 3128–3132. [Google Scholar]
  50. Uzonna JE, Kaushik RS, Gordon JR, Tabel H, 1999. Cytokines and antibody responses during Trypanosoma congolense infections in two inbred mouse strains that differ in resistance. Parasite Immunol 21 : 57–71. [Google Scholar]
  51. Hertz CJ, Filutowicz H, Mansfield JM, 1998. Resistance to the African trypanosomes is IFN-gamma dependent. J Immunol 161 : 6775–6783. [Google Scholar]
  52. Radwanska M, Guirnalda P, De TC, Ryffel B, Black S, Magez S, 2008. Trypanosomiasis-induced B cell apoptosis results in loss of protective anti-parasite antibody responses and abolishment of vaccine-induced memory responses. PLoS Pathol 4 : e1000078. [Google Scholar]
  53. Radwanska M, Magez S, Dumont N, Pays A, Nolan D, Pays E, 2000. Antibodies raised against the flagellar pocket fraction of Trypanosoma brucei preferentially recognize HSP60 in cDNA expression library. Parasite Immunol 22 : 639–650. [Google Scholar]
  54. Shi M, Wei G, Pan W, Tabel H, 2006. Experimental African trypanosomiasis: a subset of pathogenic, IFN-gamma-producing, MHC class II-restricted CD4+ T cells mediates early mortality in highly susceptible mice. J Immunol 176 : 1724–1732. [Google Scholar]
  55. Namangala B, Noel W, De BP, Brys L, Beschin A, 2001. Relative contribution of interferon-gamma and interleukin-10 to resistance to murine African trypanosomosis. J Infect Dis 183 : 1794–1800. [Google Scholar]
  56. Bakhiet M, Olsson T, Edlund C, Hojeberg B, Holmberg K, Lorentzen J, Kristensson K, 1993. A Trypanosoma brucei brucei-derived factor that triggers CD8+ lymphocytes to interferon-gamma secretion: purification, characterization and protective effects in vivo by treatment with a monoclonal antibody against the factor. Scand J Immunol 37 : 165–178. [Google Scholar]
  57. Bakhiet M, Olsson T, Mhlanga J, Buscher P, Lycke N, van der Meide PH, Kristensson K, 1996. Human and rodent interferon-gamma as a growth factor for Trypanosoma brucei. Eur J Immunol 26 : 1359–1364. [Google Scholar]

Data & Media loading...

  • Received : 25 Jan 2008
  • Accepted : 23 May 2009

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error