Volume 81, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Complex interactions between environmental and biological factors influence the susceptibility of to St. Louis encephalitis virus and could affect the epidemiology of virus transmission. Similar interactions could have epidemiologic implications for other vector-virus systems. We conducted an experiment to examine four such factors in combination: mosquito age, extrinsic incubation temperature (EIT), virus dose, and colony. The proportion of mosquitoes with body infections or disseminated infections varied between colonies, and was dependant on age, EIT, and dose. We also show that the probability of a body or leg infection interacted in complex ways between colonies, ages, EITs, and doses. The complex interactive effects of environmental and biological factors must be taken into account for studies of vector competence and epidemiology, especially when laboratory studies are used to generalize to natural transmission dynamics where the extent of variation is largely unknown.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Hardy JL, Houk EJ, Kramer LD, Reeves WC, 1983. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol 28 : 229–262. [Google Scholar]
  2. Mellor PS, 2000. Replication of arboviruses in insect vectors. J Comp Pathol 123 : 231–247. [Google Scholar]
  3. Kramer LD, Hardy JL, Presser SB, Houk EJ, 1981. Dissemination barriers for western equine encephalomyelitis virus in Culex tarsalis infected after ingestion of low viral doses. Am J Trop Med Hyg 30 : 190–197. [Google Scholar]
  4. Mahmood F, Chiles RE, Fang Y, Green EN, Reisen WK, 2006. Effects of time after infection, mosquito genotype, and infectious viral dose on the dynamics of Culex tarsalis vector competence for western equine encephalomyelitis virus. J Am Mosq Control Assoc 22 : 272–281. [Google Scholar]
  5. Chamberlain RW, Sudia WD, Gillett JD, 1959. St. Louis encephalitis virus in mosquitoes. Am J Hyg 70 : 221–236. [Google Scholar]
  6. Sardelis MR, Turell MJ, Dohm DJ, O’Guinn ML, 2001. Vector competence of selected North American culex and Coquillettidia mosquitoes for West Nile virus. Infect Dis 7 : 1018–1022. [Google Scholar]
  7. Styer L, Carey J, Wang J, Scott T, 2007. Mosquitoes do senesce: departure from the paradigm of constant mortality. Am J Trop Med Hyg 76 : 111–117. [Google Scholar]
  8. Baqar S, Hayes CG, Ahmed T, 1980. The effect of larval rearing conditions and adult age on the susceptibility of Culex tritaeniorhynchus to infection with West Nile virus. Mosq News 40 : 165–170. [Google Scholar]
  9. Takahashi M, 1976. The effects of environmental and physiological conditions of Culex tritaeniorhynchus on the pattern of transmission of Japanese encephalitis virus. J Med Entomol 13 : 275–284. [Google Scholar]
  10. Richards SL, Mores CN, Lord CC, Tabachnick WJ, 2007. Impact of extrinsic incubation temperature and virus exposure on vector competence of Culex pipiens quinquefasciatus (Diptera: Culicidae) for WNV. Vector Borne Zoonotic Dis 7 : 629–636. [Google Scholar]
  11. Day JF, Stark LM, 1999. Avian serology in a St. Louis encephalitis epicenter before, during, and after a widespread epidemic in south Florida, USA. J Med Entomol 36 : 614–624. [Google Scholar]
  12. Day JF, Stark LM, 2000. Frequency of Saint Louis encephalitis virus in humans from Florida, USA: 1990–1999. J Med Entomol 37 : 626–633. [Google Scholar]
  13. Godsey MS, Blackmore MS, Panella NA, Burkhalter K, Gottfried K, Halsey LA, Rutledge CR, Langevin SA, Gates R, Lamonte KM, Lambert A, Lanciotti RS, Blackmore CG, Loyless T, Stark L, Oliveri R, Conti L, Komar N, 2005. West Nile virus epizootiology in the southeastern United States, 2001. Vector Borne Zoonotic Dis 5 : 82–89. [Google Scholar]
  14. Monath TP, 1980. Epidemiology. Monath TP, ed. St. Louis Encephalitis, Washington, DC: American Public Health Association.
  15. Diaz LA, Viviana R, Almirón WR, Farías A, Vázquez A, Sanchez-Seco MP, Javier A, Spinsanti L, Konigheim B, Visintin A, García J, Morales MA, Tenorio A, Contigiani M, 2006. Genotype III St. Louis encephalitis virus outbreak 2005. Infect Dis 12 : 486. [Google Scholar]
  16. Monath TP, Tsai TF, 1987. St. Louis encephalitis: lessons from the last decade. Am J Trop Med Hyg 37 : 40S–59S. [Google Scholar]
  17. McCaig LF, Janowski HT, Gunn RA, Tsai TF, 1994. Epidemiologic aspects of a St. Louis encephalitis epidemic in Fort Walton Beach, Florida in 1980. Am J Trop Med Hyg 50 : 387–391. [Google Scholar]
  18. Sudia WD, Coleman PH, Chamberlain RW, Wiseman JS, Work TH, 1967. St. Louis encephalitis vector studies in Houston, Texas, 1964. J Med Entomol 4 : 32–36. [Google Scholar]
  19. Irby WS, Apperson CS, 1988. Hosts of mosquitoes in the coastal plain of North Carolina. J Med Entomol 25 : 85–93. [Google Scholar]
  20. Niebylski ML, Meek CL, 1992. Blood-feeding of Culex mosquitoes in an urban environment. J Am Mosq Control Assoc 8 : 173–177. [Google Scholar]
  21. Molaei G, Andreadis TG, Armstrong PM, Bueno R Jr, Dennett JA, Real SV, Sargent C, Bala A, Randle Y, Guzman H, Travassos da Rosa A, Wuithiranyagool T, Tesh RB, 2007. Host feeding pattern of Culex quinquefasciatus (Diptera: Culicidae) and its role in transmission of West Nile virus in Harris County, Texas. Am J Trop Med Hyg 77 : 73–81. [Google Scholar]
  22. Chamberlain RW, Gogel RH, Sudia WD, 1966. Experimental vector studies with strains of St. Louis encephalitis virus isolated from mosquitoes during the 1964 epidemics. J Med Entomol 3 : 268–270. [Google Scholar]
  23. Reisen WK, Fang Y, Martinez VM, 2005. Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission. J Med Entomol 42 : 367–375. [Google Scholar]
  24. Lillibridge KM, Parsons R, Randle Y, Travassos Da Rosa A, Guzman H, Siirin M, Wuithiranyagool T, Hailey C, Higgs S, Bala A, Pascua R, Meyer T, Vanlandingham D, Tesh R, 2004. The 2002 introduction of West Nile virus into Harris County, Texas, an area historically endemic for St. Louis encephalitis. Am J Trop Med Hyg 70 : 676–681. [Google Scholar]
  25. Bosio CF, Fulton RE, Salasek ML, Beaty BJ, Black WC, 2000. Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti. Genetics 156 : 687–698. [Google Scholar]
  26. Turell MJ, O’Guinn M, Oliver J, 2000. Potential for New York mosquitoes to transmit West Nile virus. Am J Trop Med Hyg 62 : 413–414. [Google Scholar]
  27. Turell MJ, Sardelis M, Dohm D, O’Guinn M, 2001. Potential North American vectors of West Nile virus. Ann NY Acad Sci 952 : 317–324. [Google Scholar]
  28. Lord CC, Rutledge CR, Tabachnick WJ, 2006. Relationships between host viremia and vector susceptibility for arboviruses. J Med Entomol 43 : 623–630. [Google Scholar]
  29. Faul F, Erdfelder E, Lang AG, Buchner A, 2007. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39 : 175–191. [Google Scholar]
  30. Cohen J, 1992. A power primer. Psychol Bull 111 : 155–159. [Google Scholar]
  31. Richards SL, Pesko KP, Alto BW, Mores CN, 2007. Reduced infection in mosquitoes exposed to previously frozen flaviviruses. Virus Res 129 : 224–227. [Google Scholar]
  32. Lanciotti RS, Kerst AJ, Nasci RS, Godsey MS, Mitchell CJ, Savage HM, Komar N, Panella NA, Allen BC, Volpe KE, Davis BS, Roehrig JT, 2000. Rapid detection of West Nile virus from human clinical specimens, field-collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol 38 : 4066–4071. [Google Scholar]
  33. Alto BW, Lounibos LP, Juliano SA, 2003. Age-dependent blood-feeding of Aedes aegypti and Aedes albopictus on artificial and living hosts. J Am Mosq Control Assoc 19 : 347–352. [Google Scholar]
  34. Day JF, Curtis G, 1993. Annual emergence patterns of Culex nigripalpus females before, during, and after a widespread St. Louis encephalitis epidemic in south Florida. J Am Mosq Control Assoc 9 : 249–253. [Google Scholar]
  35. Goddard LB, Roth AE, Reisen WK, Scott TW, 2002. Vector competence of California mosquitoes for West Nile virus. Infect Dis 8 : 1385–1391. [Google Scholar]
  36. Anderson JF, Main AJ, Delroux K, Fikrig E, 2008. Extrinsic incubation periods for horizontal and vertical transmission of West Nile virus by Culex pipiens pipiens. J Med Entomol 45 : 445–451. [Google Scholar]
  37. Lanciotti RS, Kerst AJ, 2001. Nucleic acid sequence-based amplification assays for rapid detection of West Nile and St. Louis encephalitis viruses. J Clin Microbiol 39 : 4506–4513. [Google Scholar]
  38. Bustin SA, 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25 : 169–193. [Google Scholar]
  39. Gargan TP, Bailey CL, Higbee GA, Gad A, Said S, 1983. The effect of laboratory colonization on the vector-pathogen interactions of Egyptian Culex pipiens and Rift Valley fever virus. Am J Trop Med Hyg 32 : 1154–1163. [Google Scholar]
  40. Turell MJ, Gargan TP, Bailey CL, 1984. Replication and dissemination of Rift Valley fever virus in Culex pipiens. Am J Trop Med Hyg 33 : 176–181. [Google Scholar]
  41. SAS, 2002. SAS/STAT User’s Guide for Personal Computers. Computer Program, Version 8.0. Cary, NC: SAS.
  42. Venter GJ, Paweska JT, Lunt H, Mellor PS, Carpenter S, 2005. An alternative method of blood-feeding Culicoides imicola and other haematophagous Culicoides species for vector competence studies. Vet Parasitol 131 : 331–335. [Google Scholar]
  43. Lorenz L, Beaty BJ, Aitken THG, Wallis GP, Tabachnick WJ, 1984. The effect of colonization upon Aedes aegypti susceptibility to oral infection with yellow fever virus. Am J Trop Med Hyg 33 : 690–694. [Google Scholar]
  44. Reisen WK, Meyer RP, Presser SB, Hardy JL, 1993. Effect of temperature on the transmission of western equine encephalomyelitis and St. Louis encephalitis viruses by Culex tarsalis (Diptera: Culicidae). J Med Entomol 30 : 151–160. [Google Scholar]
  45. Dohm DJ, O’Guinn ML, Turell MJ, 2002. Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol 39 : 221–225. [Google Scholar]
  46. Reisen WK, Fang Y, Martinez VM, 2006. Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera: Culicidae). J Med Entomol 43 : 309–317. [Google Scholar]
  47. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens HH, White JS, 2008. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24 : 127–135. [Google Scholar]

Data & Media loading...

  • Received : 18 Jul 2008
  • Accepted : 18 May 2009

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error