Volume 81, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Alterations in gene expression in the midgut of female exposed to blood meals containing 6.8 logs plaque-forming units/mL of West Nile virus (WNV) were studied by fluorescent differential display. Twenty-six different cDNAs exhibited reproducible differences after feeding on infected blood. Of these, 21 cDNAs showed an increase in expression, and 5 showed a decrease in expression as a result of WNV presence in the blood meal. GenBank database searches showed that one clone with increased expression, CQ G12A2, shares 94% identity with a leucine-rich repeat-containing protein from and 32% identity to Toll-like receptors from . We present the first cDNA clone isolated from female midgut tissue whose expression changes on exposure to WNV. This cDNA represents a mosquito gene that is an excellent candidate for interacting with WNV in and may play a role in disease transmission.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Murgue B, Murri S, Zientara S, Durand B, Durand JP, Zeller H, 2001. West Nile outbreak in horses in southern France, 2000: the return after 35 years. Emerg Infect Dis 7 : 692–696. [Google Scholar]
  2. Autorino GL, Battisti A, Deubel V, Ferrari G, Forletta R, Giovannini A, Lelli R, Murri S, Scicluna MT, 2002. West Nile virus epidemic in horses, Tuscany region, Italy. Emerg Infect Dis 8 : 1372–1378. [Google Scholar]
  3. Peyrefitte CN, Pastorino B, Grau GE, Lou J, Tolou H, Couissinier-Paris P, 2006. Dengue virus infection of human microvascular endothelial cells from different vascular beds promotes both common and specific functional changes. J Med Virol 78 : 229–242. [Google Scholar]
  4. Kramer LD, Styer LM, Ebel GD, 2008. A global perspective on the epidemiology of West Nile virus. Annu Rev Entomol 53 : 61–81. [Google Scholar]
  5. Sardelis MR, Turell MJ, Dohm DJ, O’guinn ML, 2001. Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus. Emerg Infect Dis 7 : 1018–1022. [Google Scholar]
  6. Day JF, 2005. Host-seeking strategies of mosquito disease vectors. J Am Mosq Control Assoc 21 : 17–22. [Google Scholar]
  7. Hayes EB, Komar N, Nasci RS, Montgomery SP, O’leary DR, Campbell GL, 2005. Epidemiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis 11 : 1167–1173. [Google Scholar]
  8. Gubler DJ, 2007. The continuing spread of West Nile virus in the western hemisphere. Clin Infect Dis 45 : 1039–1046. [Google Scholar]
  9. Rutledge CR, Day JF, Lord CC, Stark LM, Tabachnick WJ, 2003. West Nile virus infection rates in Culex nigripalpus (Diptera: Culicidae) do not reflect transmission rates in Florida. J Med Entomol 40 : 253–258. [Google Scholar]
  10. Turell MJ, Dohm DJ, Sardelis MR, Oguinn ML, Andreadis TG, Blow JA, 2005. An update on the potential of North American mosquitoes (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol 42 : 57–62. [Google Scholar]
  11. DeFoliart GR, Grimstad PR, Watts DM, 1987. Advances in mosquito-borne arbovirus/vector research. Annu Rev Entomol 32 : 479–505. [Google Scholar]
  12. Richards SL, Mores CN, Lord CC, Tabachnick WJ, 2007. Impact of extrinsic incubation temperature and virus exposure on vector competence of Culex pipiens quinquefasciatus Say (Diptera: Culicidae) for West Nile virus. Vector Borne Zoonotic Dis 7 : 629–636. [Google Scholar]
  13. Hardy J, Houk E, Kramer L, Reeves W, 1983. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol 28 : 229–262. [Google Scholar]
  14. Black WC, Bennett KE, Gorrochotegui-Escalante N, Barillas-Mury CV, Fernandez-Salas I, De Lourdes Munoz M, Farfan-Ale JA, Olson KE, Beaty BJ, 2002. Flavivirus susceptibility in Aedes aegypti. Arch Med Res 33 : 379–388. [Google Scholar]
  15. Vlachou D, Schlegelmilch T, Christophides GK, Kafatos FC, 2005. Functional genomic analysis of midgut epithelial responses in Anopheles during Plasmodium invasion. Curr Biol 15 : 1185–1195. [Google Scholar]
  16. Ebel GD, Rochlin I, Longacker J, Kramer LD, 2005. Culex restuans (Diptera: Culicidae) relative abundance and vector competence for West Nile virus. J Med Entomol 42 : 838–843. [Google Scholar]
  17. Vaidyanathan R, Scott TW, 2006. Apoptosis in mosquito midgut epithelia associated with West Nile virus infection. Apoptosis 11 : 1643–1651. [Google Scholar]
  18. Sanders HR, Evans AM, Ross LS, Gill SS, 2003. Blood meal induces global changes in midgut gene expression in the disease vector, Aedes aegypti. Insect Biochem Mol Biol 33 : 1105–1122. [Google Scholar]
  19. Smartt CT, Erickson JS, 2008a. Bloodmeal-induced differential gene expression in the disease vector Culex nigripalpus (Diptera: Culicidae). J Med Entomol 45 : 326–330. [Google Scholar]
  20. Smartt CT, Erickson JS, 2008b. CNAct-1 gene is differentially expressed in the subtropical mosquito Culex nigripalpus (Diptera: Culicidae), the primary West Nile virus vector in Florida. J Med Entomol 45 : 877–884. [Google Scholar]
  21. Sanders HR, Foy BD, Evans AM, Ross LS, Beaty BJ, Olson KE, Gill SS, 2005. Sindbis virus induces transport processes and alters expression of innate immunity pathway genes in the midgut of the disease vector, Aedes aegypti. Insect Biochem Mol Biol 35 : 1293–1307. [Google Scholar]
  22. Deubel V, Digoutte JP, Mattei X, Pandare D, 1981. Morphogenesis of yellow fever virus in Aedes aegypti cultured cells. II. An ultra-structural study. Am J Trop Med Hyg 30 : 1071–1077. [Google Scholar]
  23. Ng ML, 1987. Ultrastructural studies of Kunjin virus-infected Aedes albopictus cells. J Gen Virol 68 : 577–582. [Google Scholar]
  24. Girard YA, Popov V, Wen J, Han V, Higgs S, 2005. Ultrastructural study of West Nile virus pathogenesis in Culex pipiens quinque-fasciatus (Diptera: Culicidae). J Med Entomol 42 : 429–444. [Google Scholar]
  25. Franz AW, Sanchez-Vargas I, Adelman ZN, Blair CD, Beaty BJ, James AA, Olson KE, 2006. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci USA 103 : 4198–4203. [Google Scholar]
  26. Xi Z, Ramirez JL, Dimopoulos G, 2008. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog 4 : e1000098. [Google Scholar]
  27. Keene KM, Foy BD, Sanchez-Vargas I, Beaty BJ, Blair CD, Olson KE, 2004. RNA interference acts as a natural antiviral response to O’nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc Natl Acad Sci USA 101 : 17240–17245. [Google Scholar]
  28. Richards SL, Lord CC, Pesko KA, Tabachnick WJ, 2009. Environmental and biological factors influencing Culex pipiens quinquefasciatus Say (Diptera: Culicidae) vector competence for Saint Louis encephalitis virus. Am J Trop Med Hyg 81 : 264–272. [Google Scholar]
  29. Lanciotti R, Kerst A, Nasci R, Godsey M, Mitchell C, Savage H, Komar N, Panella N, Allen B, Volpe K, Davis B, Roehrig J, 2000. Rapid detection of West Nile virus from human clinical specimens, field collected mosquitoes, and avian samples by a TaqMan reverse transcriptase-PCR assay. J Clin Microbiol 38 : 4066–4071. [Google Scholar]
  30. Liang P, Pardee AB, 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257 : 967–971. [Google Scholar]
  31. SAS Institute, 2002. SAS/STAT User’s Guide for Personal Computers, Version 8.0. SAS Institute, Cary, NC.
  32. Girard YA, Klinger KA, Higgs S, 2004. West Nile virus dissemination and tissue tropisms in orally infected Culex pipiens quin-quefasciatus. Vector Borne Zoonotic Dis 4 : 109–122. [Google Scholar]
  33. Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi Z, Megy K, Grabherr M, Ren Q, Zdobnov EM, Lobo NF, Campbell KS, Brown SE, Bonaldo MF, Zhu J, Sinkins SP, Hogenkamp DG, Amedeo P, Arensburger P, Atkinson PW, Bidwell S, Biedler J, Birney E, Bruggner RV, Costas J, Coy MR, Crabtree J, Crawford M, Debruyn B, Decaprio D, Eiglmeier K, Eisenstadt E, El-Dorry H, Gelbart WM, Gomes SL, Hammond M, Hannick LI, Hogan JR, Holmes MH, Jaffe D, Johnston JS, Kennedy RC, Koo H, Kravitz S, Kriventseva EV, Kulp D, Labutti K, Lee E, Li S, Lovin DD, Mao C, Mauceli E, Menck CF, Miller JR, Montgomery P, Mori A, Nascimento AL, Naveira HF, Nusbaum C, O’leary S, Orvis J, Pertea M, Quesneville H, Reidenbach KR, Rogers YH, Roth C W, Schneider JR, Schatz M, Shumway M, Stanke M, Stinson EO, Tubio J M, Vanzee JP, Verjovski-Almeida S, Werner D, White O, Wyder S, Zeng Q, Zhao Q, Zhao Y, Hill CA, Raikhel AS, Soares MB, Knudson DL, Lee NH, Galagan J, Salzberg SL, Paulsen IT, Dimopoulos G, Collins FH, Birren B, Fraser-Liggett CM, Severson DW, 2007. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316 : 1718–1723. [Google Scholar]
  34. Kobe B, Kajava AV, 2001. The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11 : 725–732. [Google Scholar]
  35. Dolan J, Walshe K, Alsbury S, Hokamp K, O’keeffe S, Okafuji T, Miller SF, Tear G, Mitchell KJ, 2007. The extracellular leucine-rich repeat superfamily; a comparative survey and analysis of evolutionary relationships and expression patterns. BMC Genomics 8 : 320. [Google Scholar]
  36. Chen Y, Aulia S, Li L, Tang BL, 2006. AMIGO and friends: an emerging family of brain-enriched, neuronal growth modulating, type I transmembrane proteins with leucine-rich repeats (LRR) and cell adhesion molecule motifs. Brain Res Brain Res Rev 51 : 265–274. [Google Scholar]
  37. Nurnberger T, Brunner F, Kemmerling B, Piater L, 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198 : 249–266. [Google Scholar]
  38. Imler JL, Zheng L, 2004. Biology of Toll receptors: lessons from insects and mammals. J Leukoc Biol 75 : 18–26. [Google Scholar]
  39. Imler JL, Ferrandon D, Royet J, Reichhart JM, Hetru C, Hoffmann JA, 2004. Toll-dependent and Toll-independent immune responses in Drosophila. J Endotoxin Res 10 : 241–246. [Google Scholar]
  40. Zambon RA, Nandakumar M, Vakharia VN, Wu LP, 2005. The Toll pathway is important for an antiviral response in Drosophila. Proc Natl Acad Sci USA 102 : 7257–7262. [Google Scholar]
  41. Christophides GK, Zdobnov E, Barillas-Mury C, Birney E, Blandin S, Blass C, Brey PT, Collins FH, Danielli A, Dimopoulos G, Hetru C, Hoa NT, Hoffmann JA, Kanzok SM, Letunic I, Levashina EA, Loukeris TG, Lycett G, Meister S, Michel K, Moita LF, Muller HM, Osta MA, Paskewitz SM, Reichhart JM, Rzhetsky A, Troxler L, Vernick KD, Vlachou D, Volz J, Von Mering C, Xu J, Zheng L, Bork P, Kafatos FC, 2002. Immunity-related genes and gene families in Anopheles gambiae. Science 298 : 159–165. [Google Scholar]
  42. Shin SW, Bian G, Raikhel AS, 2006. A toll receptor and a cytokine, Toll5A and Spz1C, are involved in toll antifungal immune signaling in the mosquito Aedes aegypti. J Biol Chem 281 : 39388–39395. [Google Scholar]
  43. Marinotti O, Calvo E, Nguyen QK, Dissanayake S, Ribeiro JM, James AA, 2006. Genome-wide analysis of gene expression in adult Anopheles gambiae. Insect Mol Biol 15 : 1–12. [Google Scholar]
  44. Clements AN, 2000. The Biology of Mosquitoes. Volume 1: Development, Nutrition and Reproduction. New York: CABI Publishing.

Data & Media loading...

  • Received : 10 Mar 2009
  • Accepted : 12 May 2009

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error