Volume 81, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Levels of genetic variation and population structure were determined for 181 insects from four populations of southeastern Brazil, through the analysis of 28 allozyme loci. None of these loci presented fixed differences between any pair of populations, and only two revealed polymorphism, accounting for low levels of heterozygosity ( = 0.027), and low genetic distances ( < 0.03) among populations. and Contingency Table results indicated the existence of genetic structure among populations ( = 0.214), which were incompatible with the isolation by distance model (Mantel test: = 0.774; = 0.249).


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Diotaiuti L, Pereira AS, Loiola CF, Fernandes AJ, Schofield JC, Dujardin JP, Dias JC, Chiari E, 1995. Inter-relation of sylvatic and domestic transmission of Trypanosoma cruzi in areas with and without domestic vectorial transmission in Minas Gerais, Brazil. Mem Inst Oswaldo Cruz 90 : 443–448. [Google Scholar]
  2. Pereira MH, Gontijo NF, Guarneri AA, Sant’Anna MR, Diotaiuti L, 2006. Competitive displacement in Triatominae: the Triatoma infestans success. Trends Parasitol 22 : 516–520. [Google Scholar]
  3. Schofield CJ, Dias JC, 1999. The Southern Cone Initiative against Chagas disease. Adv Parasitol 42 : 1–27. [Google Scholar]
  4. PAHO, 2006. The Newsletter of the Pan American Health Organization. Available at: http://www.paho.org/English/DD/PIN/ptoday24_aug06.htm. Accessed December 12, 2008.
  5. Noireau F, Flores R, Gutierrez T, Dujardin JP, 1997. Detection of sylvatic dark morphs of Triatoma infestans in the Bolivian Chaco. Mem Inst Oswaldo Cruz 92 : 583–584. [Google Scholar]
  6. Herrera L, Pinho AP, Lorosa E, Xavier SCC, Emperaire L, Mangia RH, 2003. Studies of triatomine infection with Trypanosoma cruzi in João Costa, Piauí, Brazil. Acta Parasitol 48 : 1230–2821. [Google Scholar]
  7. Panzera F, Hornos S, Pereira J, Cestau R, Canale D, Diotaiuti L, Dujardin JP, Pérez R, 1997. Genetic variability and geographic differentiation among three species of triatomine bugs (Hemiptera: Reduviidae). Am J Trop Med Hyg 57 : 732–739. [Google Scholar]
  8. Jurberg J, Galvao C, Lent H, Monteiro FA, Lopes CM, Panzera F, Perez R, 1998. Revalidação de Triatoma garciabesi Carcavallo, Martinez, Cichero, Prosen & Ronderos, 1967 (Hemiptera: Reduviidae). Entomol Vect 5 : 107–122. [Google Scholar]
  9. Noireau F, Gutierrez T, Zegarra M, Flores R, Breniere F, Cardozo L, Dujardin JP, 1998. Cryptic speciation in Triatoma sordida (Hemiptera: Reduviidae) from the Bolivian Chaco. Trop Med Int Health 3 : 364–372. [Google Scholar]
  10. Abad-Franch F, Monteiro FA, 2007. Biogeography and evolution of Amazonian triatomines (Heteroptera: Reduviidae): implications for Chagas disease surveillance in humid forest ecoregions. Mem Inst Oswaldo Cruz 102 : 57–70. [Google Scholar]
  11. Conn JE, Mirabello L, 2007. The biogeography and population genetics of neotropical vector species. Heredity 99 : 245–256. [Google Scholar]
  12. Dujardin JP, Tibayrenc M, Venegas E, Maldonado L, Desjeux P, Ayala FJ, 1987. Isoenzyme evidence of lack of speciation between wild and domestic Triatoma infestans (Heteroptera: Reduviidae) in Bolivia. J Med Entomol 24 : 40–45. [Google Scholar]
  13. Harry M, 1993. Isozymic data question the specific status of some blood-sucking bugs of the genus Rhodnius, vectors of Chagas disease. Trans R Soc Trop Med Hyg 87 : 492–493. [Google Scholar]
  14. Monteiro FA, Pérez R, Panzera F, Dujardin JP, Galvão C, Rocha D, Noireau F, Schofield C, Beard CB, 1999. Mitochondrial DNA variation of Triatoma infestans populations and its implication on the specific status of T. melanosoma. Mem Inst Oswaldo Cruz 94 : 229–238. [Google Scholar]
  15. Monteiro FA, Barrett TV, Fitzpatrick S, Cordon-Rosales C, Feliciangeli D, Beard CB, 2003. Molecular phylogeography of the Amazonian Chagas disease vectors Rhodnius prolixus and R. robustus. Mol Ecol 12 : 997–1006. [Google Scholar]
  16. Monteiro FA, Donnelly MJ, Beard CB, Costa J, 2004. Nested clade and phylogeographic analyses of the Chagas disease vector Triatoma brasiliensis in Northeast Brazil. Mol Phylogenet Evol 32 : 46–56. [Google Scholar]
  17. Bargues MD, Klisiowicz DR, Gonzalez-Candelas F, Ramsey JM, Monroy C, Ponce C, Salazar-Schettino PM, Panzera F, Abad-Franch F, Sousa OE, Schofield CJ, Dujardin JP, Guhl F, Mas-Coma S, 2008. Phylogeography and genetic variation of Triatoma dimidiata, the main Chagas disease vector in Central America, and its position within the genus Triatoma. PLoS Negl Trop Dis 2 : e233. [Google Scholar]
  18. Dujardin JP, Schofield CJ, Tibayrenc M, 1998. Population structure of Andean Triatoma infestans: allozyme frequencies and their epidemiological relevance. Med Vet Entomol 12 : 20–29. [Google Scholar]
  19. Noireau F, Zegarra M, Ordoñez J, Gutierrez T, Dujardin JP, 1999. Genetic structure of Triatoma sordida (Hemiptera: Reduviidae) domestic populations from Bolivia: application on control interventions. Mem Inst Oswaldo Cruz 94 : 347–351. [Google Scholar]
  20. Pérez de Rosas AR, Segura EL, García BA, 2007. Microsatellite analysis of genetic structure in natural Triatoma infestans (Hemiptera: Reduviidae) populations from Argentina: its implication in assessing the effectiveness of Chagas disease vector control programmes. Mol Ecol 16 : 1401–1412. [Google Scholar]
  21. Fitzpatrick S, Feliciangeli MD, Sanchez-Martin MJ, Monteiro FA, Miles MA, 2008. Molecular genetics reveal that silvatic Rhodnius prolixus do colonise rural houses. PLoS Negl Trop Dis 2 : 997–1006. [Google Scholar]
  22. Marcet PL, Mora MS, Cutrera AP, Jones L, Gürtler RE, Kitron U, Dotson EM, 2008. Genetic structure of Triatoma infestans populations in rural communities of Santiago del Estero, northern Argentina. Infect Genet Evol 8 : 835–846. [Google Scholar]
  23. Pizarro JC, Gilligan LM, Stevens L, 2008. Microsatellites reveal a high population structure in Triatoma infestans from Chuquisaca, Bolivia. PLoS Negl Trop Dis 2 : 1–8. [Google Scholar]
  24. Morrone JJ, 2006. Biogeographic areas and transition zones of Latin America and the Caribbean islands based on panbiogeographic and cladistic analyses of the entomofauna. Annu Rev Entomol 51 : 467–494. [Google Scholar]
  25. Lent H, Wygodzinsky P, 1979. Revision of the Triatominae (Hemiptera: Reduviidae) and their significance as vectors of Chagas disease. Bull Am Mus Nat Hist 163 : 123–520. [Google Scholar]
  26. Momen H, Salles CA, 1985. Enzyme markers for Vibrio cholerae: identification of classical, eltor and environmental strains. Trans R Soc Trop Med Hyg 79 : 773–776. [Google Scholar]
  27. Dujardin JP, Tibayrenc M, 1985. Study of 11 enzymes and formal genetic findings for 19 enzymatic loci in Triatoma infestans (Hemiptera: Reduviidae). Ann Soc Belg Med Trop 65 : 271–280. [Google Scholar]
  28. Manchenko GP, 1994. Handbook of Detection of Enzymes on Electrophoretic Gels. Michigan: CRC Press Inc.
  29. Wright S, 1978. Evolution and the Genetics of Populations. Volume 4. London: The University of Chicago Press.
  30. Nei M, 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89 : 583–590. [Google Scholar]
  31. Swofford DL, Selander RB, 1981. BIOSYS-1, a FORTRAN programme for the comprehensive analysis of electrophoretic data in population genetics and systematics. J Hered 72 : 281–283. [Google Scholar]
  32. Waples RS, 1987. A multispecies approach to the analysis of gene flow in marine store fishes. Evolution Int J Org Evolution 41 : 385–400. [Google Scholar]
  33. Sokal RR, Rohlf FJ, 1995. Biometry: The Principles and Practice of Statistics in Biological Research. San Francisco, CA: Freeman WH and Co.
  34. Miller MP, 1997. Tools for population genetic analyses (TFPGA) version 1.3: a Windows program for the analysis of allozyme and molecular population genetic data. Programme distributed by the author.
  35. Ayala FJ, 1983. Enzymes as taxonomic characters. Oxford GS, Rollinson D, eds. Protein Polymorphism: Adaptive and Taxonomic Significance. London: Academic Press, 3–26.
  36. Borges EC, Dujardin JP, Schofield CJ, Romanha AJ, Diotaiuti L, 2000. Genetic variability of Triatoma brasiliensis (Hemiptera: Reduviidae) populations. J Med Entomol 37 : 872–877. [Google Scholar]
  37. Monteiro FA, Lazoski C, Noireau F, Sole-Cava AM, 2002. Allozyme relationships among ten species of Rhodniini, showing paraphyly of Rhodnius including Psammolestes. Med Vet Entomol 16 : 83–90. [Google Scholar]
  38. dos Santos SM, Lopes CM, Dujardin JP, Panzera F, Pérez R, Carbajal de la Fuente AL, Pacheco RS, Noireau F, 2007. Evolutionary relationships based on genetic and phenetic characters between Triatoma maculata, T. pseudomaculata and morphologically related species (Reduviidae: Triatominae). Infect Genet Evol 7 : 469–475. [Google Scholar]
  39. García BA, Canale DM, Blanco A, 1995. Genetic structure of four species of Triatoma (Hemiptera: Reduviidae) from Argentina. J Med Entomol 32 : 134–137. [Google Scholar]
  40. Schofield CJ, 1980. Density regulation of domestic populations of Triatoma infestans in Brazil. Trans R Soc Trop Med Hyg 74 : 761–769. [Google Scholar]
  41. Oscherov EB, Damborsky MP, Bar ME, Gorla DE, 2004. Competition between vectors of Chagas disease, Triatoma infestans and T. sordida: effects on fecundity and mortality. Med Vet Entomol 18 : 323–328. [Google Scholar]
  42. Harry M, Poyet G, Romaña CA, Solignac M, 1998. Isolation and characterization of microsatellite markers in the bloodsucking bug Rhodnius pallescens (Heteroptera, Reduviidae). Mol Ecol 7 : 1784–1786. [Google Scholar]
  43. Harry M, Dupont L, Romana C, Demanche C, Mercier A, Livet A, Diotaiuti L, Noireau F, Emperaire L, 2008. Microsatellite markers in Triatoma pseudomaculata (Hemiptera, Reduviidae, Triatominae), Chagas disease vector in Brazil. Infect Genet Evol 8 : 672–675. [Google Scholar]
  44. Harry M, Roose CL, Vautrin D, Noireau F, Romaña CA, Solignac M, 2008. Microsatellite markers from the Chagas disease vector, Rhodnius prolixus (Hemiptera, Reduviidae), and their applicability to Rhodnius species. Infect Genet Evol 8 : 381–385. [Google Scholar]
  45. Anderson JM, Lai JE, Dotson EM, Cordon-Rosales C, Ponce C, Norris DE, Beard CB, 2002. Identification and characterization of microsatellite markers in the Chagas disease vector Triatoma dimidiata. Infect Genet Evol 1 : 243–248. [Google Scholar]
  46. Marcet PL, Lehmann T, Groner G, Gürtler RE, Kitron U, Dotson EM, 2006. Identification and characterization of microsatellite markers in the Chagas disease vector Triatoma infestans (Heteroptera: Reduviidae). Infect Genet Evol 6 : 32–37. [Google Scholar]
  47. Lessios HA, 1992. Testing electrophoretic data for agreement with Hardy-Weinberg expectations. Mar Biol 112 : 517–523. [Google Scholar]
  48. Ward RD, Beardmore JA, 1977. Protein variation in the plaice (Pleuronectes platessa). Genet Res 30 : 45–62. [Google Scholar]

Data & Media loading...

  • Received : 30 Dec 2008
  • Accepted : 12 Mar 2009

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error