Volume 80, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Entomopathogenic fungi, such as and , are being researched as alternatives to chemical adulticides to control mosquito vectors of malaria and dengue. Two cited concerns of fungal control include conidial viability and risks fungal entomopathogens pose to human health. We measured spore viability of 10 fungal isolates over 26 weeks and found a range of persistence. Three isolates maintained ≥ 50% viability 14 weeks after application. No isolate persisted longer than 1 week. To help assess risk of conidia as potential human allergens, we measured airborne conidia in enclosed environments after simulated biopesticide treatment of . Conidia were detectable immediately after treatment, with concentrations of ~7000/m, decreasing over 48 hours to 500 conidia/m. At most, conidia comprised 2% of total visible particulate matter, falling to 0.1% by 2 days. The implications for viability of biological control of adult mosquitoes are discussed.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Baird JK, 2005. Effectiveness of antimalarial drugs. N Engl J Med 352 : 1565–1577. [Google Scholar]
  2. Corbel V, N’Guessan R, Brengues C, Chandre F, Djongbenou L, Martin T, Akogbto M, Hougard JM, Rowland M, 2007. Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. Acta Trop 101 : 207–216. [Google Scholar]
  3. Ponlawat A, Scott JG, Harrington LC, 2005. Insecticide susceptibility of Aedes aegypti and Aedes albopictus across Thailand. J Med Entomol 42 : 821–825. [Google Scholar]
  4. Scholte S-J, Ng’habi K, Kihonda J, Takken W, Paaijmans K, Abdullah S, Killeen GF, Knols BGJ, 2005. An entomopathic fungus for the control of adult African malaria mosquitoes. Science 308 : 1641–1642. [Google Scholar]
  5. Scholte S-J, Takken W, Knols BGJ, 2007. Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Acta Trop 102 : 151–158. [Google Scholar]
  6. Blanford S, Chan BHK, Jenkins N, Sim D, Turner RJ, Read AF, Thomas MB, 2005. Fungal pathogen reduces potential for malaria transmission. Science 308 : 1638–1641. [Google Scholar]
  7. Thomas MB, Read AF, 2007. Can fungal biopesticides control malaria? Nat Rev Microbiol 5 : 377–383. [Google Scholar]
  8. Kanzok SM, Jacobs-Lorena M, 2006. Entomopathogenic fungu as biological insecticides to control malaria. Trends Parasitol 22 : 49–51. [Google Scholar]
  9. Ward MDW, Selgrade MK, Hutchinson OC, Cunningham AA, 2005. Benefits and risks of malaria control. Science 310 : 49–51. [Google Scholar]
  10. Thomas MB, Wood SN, Langewald J, Lomer CJ, 1997. Persistence of Metarhizium flavoviride and consequences for biological control of grasshoppers and locusts. Pestic Sci 49 : 47–55. [Google Scholar]
  11. Melnikova EA, Murza VA, 1980. Investigations of the safety of industrial strains of microorganisms and microbial insecticides. J Hyg Epidemiol Microbiol Immunol 24 : 425–431. [Google Scholar]
  12. Strasser H, Vey A, Butt TM, 2000. Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Sci Technol 10 : 717–735. [Google Scholar]
  13. Goettel MS, Hajek AE, Siegel JP, Evans HC, 2001. Safety of fungal biocontrol agents. Butt TM, Jackson C, Magan N, eds. Fungi as Biocontrol Agents: Progress, Problems and Potential. Wallingford: CAB International, 347–376.
  14. Zimmermann G, 2007a. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Technol 17 : 553–596. [Google Scholar]
  15. Zimmermann G, 2007b. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol 17 : 879–920. [Google Scholar]
  16. Gürcan Ş, Tuğrul HM, Yörük Y, Özer B, Tatman-Otkun M, Otkun M, 2006. First case report of empyema caused by Beauveria bassiana. Mycoses 49 : 246–248. [Google Scholar]
  17. Henke MO, de Hoog GS, Gross U, Zimmermann G, Kraemer D, Weig M, 2002. Human deep tissue infection with an entomopathogenic Beauveria species. J Clin Microbiol 40 : 2698–2702. [Google Scholar]
  18. Tucker DL, Beresford CH, Sigler L, Rogers K, 2004. Disseminated Beauveria bassiana infection in a patient with acute lymphoblastic leukemia. J Clin Microbiol 42 : 5412–5414. [Google Scholar]
  19. Burgner D, Eagles G, Burgess M, Procopis P, Rogers M, Muir D, Pritchard R, Hocking A, Priest M, 1998. Disseminated invasive infection due to Metarhizium anisopliae in an immunocompromised child. J Clin Microbiol 36 : 1146–1150. [Google Scholar]
  20. Jani BR, Rinaldi MG, Reinhart WJ, 2001. An unusual case of fungal keratitis; Metarhizium anisopliae. Cornea 20 : 765–768. [Google Scholar]
  21. Osorio S, de la Cámara R, Monteserin MC, Granados R, Oña F, Rodriguez-Tudela JL, Cuenca-Estrella M, 2007. Recurrent disseminated skin legions due to Metarhizium anisopliae in an adult patient with acute myelogenous leukemia. J Clin Microbiol 45 : 651–655. [Google Scholar]
  22. Sachs SW, Baum J, Mies C, 1985. Beauveria bassiana keratitis. Br J Ophthalmol 69 : 548–550. [Google Scholar]
  23. Kisla TA, Cu-Unjieng A, Sigler L, Sugar J, 2000. Medical management of Beauveria bassiana keratitis. Cornea 19 : 405–406. [Google Scholar]
  24. Marsh RA, Lucky AW, Walsh TJ, Pacheco MC, Rinaldi MG, Mailler-Savage E, Puel A, Casanova J-L, Bleesing JJ, Filippi M-D, Willams DA, Daines MO, 2008. Cutaneous infection with Metarhizium anisopliae in a patient with hypohidrotic ectodermal dysplasia and immune deficiency. Pediatr Infect Dis J 27 : 1–2. [Google Scholar]
  25. Tu EY, Park AJ, 2007. Recalcitrant Beauveria bassiana keratitis: confocal microscopy findings and treatment with posaconazole (Noxafil). Cornea 26 : 1008–1010. [Google Scholar]
  26. de Garcia C, Arboleda ML, Barraquer F, Grose E, 1997. Fungal keratitis caused by Metarhizium anisopliae var. anisopliae. Med Mycol 35 : 361–363. [Google Scholar]
  27. Revankar SG, Sutton DA, Sanche SE, Rao J, Zervos M, Dashti F, Rinaldi MG, 1999. Metarhizium anisopliae as a cause of sinusitis in immunocompetent hosts. J Clin Microbiol 37 : 195–198. [Google Scholar]
  28. Fréour P, Lahourcade M, Chomy P, 1966. Une mycose nouvelle: etude clinique et mycologique d’une localisation pulmonaire de Beauveria. Société Médicale de Hôpitaux de Paris 3 : 197–206. [Google Scholar]
  29. Drouhet E, Dupont B, 1980. Chronic mucocutaneous candidosis and other superficial and systemic mycoses successfully treated with ketoconazole. Rev Infect Dis 2 : 606–619. [Google Scholar]
  30. Crameri R, Blaser K, 2002. Allergy and immunity to fungal infections and colonization. Eur Respir J 19 : 151–157. [Google Scholar]
  31. Romani L, 2004. Immunity to fungal infections. Nat Rev Immunol 4 : 11–23. [Google Scholar]
  32. Ward MDW, Madison SL, Andrews DL, Sailstad DM, Gavett SH, Selgrade MJK, 2000. Comparison of respiratory responses to Metarhizium anisopliae extract using two different sensitization protocols. Toxicology 147 : 133–145. [Google Scholar]
  33. Instanes C, Ward MDW, Hetland G, 2006. The fungal biopesticide Metarhizium anisopliae has an adjuvant effect on the allergice response to ovalbumin in mice. Toxicol Lett 161 : 219–225. [Google Scholar]
  34. Lacey J, Crook B, 1988. Fungal and actinomycete spores as pollutants of the workplace and occupational allergens. Ann Occup Hyg 32 : 515–533. [Google Scholar]
  35. Ellis ME, Al-Abdely H, Sandridge A, Greer W, Ventura W, 2001. Fungal endocarditis: evidence in the world literature, 1965–1995. Clin Infect Dis 32 : 50–62. [Google Scholar]
  36. Simmons RB, Price DL, Noble JA, Crow SA, Ahearn DG, 1997. Fungal colonization of air filters from hospitals. Am Ind Hyg Assoc J 58 : 900–904. [Google Scholar]
  37. Sigler L, Flis A, 1998. Catalogue of the University of Alberta Microfungus Collection and Herbarium (UAMH). Edmonton: University of Alberta.
  38. Carmichael JW, 1961. Fungi from Alberta rodents. Mycopathol Mycol Appl 14 : 129–135. [Google Scholar]
  39. Thomas MB, Blanford S, Jenkins NE, Killeen GF, Knols BGJ, Read AF, Scholte E-J, Takken W, 2005. Benefits and risks in malaria control. Science 310 : 49–51. [Google Scholar]
  40. Bateman RP, Carey M, Moore D, Prior C, 1993. The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Ann Appl Biol 122 : 145–152. [Google Scholar]
  41. Khan NN, Wilson BL, 2003. An environmental assessment of mold concentrations and potential mycotoxin exposures in the greater southeast Texas area. J Environ Sci Health Part A A38 : 2759–2772. [Google Scholar]
  42. WHO, 2006. Indoor Residual Spraying. Use of indoor residual spraying for scaling up global malaria control and elimination. WHO/HTM/MAL/2006.1112.
  43. Hancock PA, Thomas MB, Godray HCJ, 2009. An age-structured model to evaluate the potential of novel malaria-control interventions: a case study of fungal biopesticide sprays. Proc R Soc 276 : 71–80. [Google Scholar]
  44. Garrett MH, Hooper BM, Cole FM, Hooper MA, 1997. Airborne fungal spores in 80 homes in the Latrobe Valley, Australia: levels, seasonality and indoor-outdoor relationship. Aerobiologia 13 : 121–126. [Google Scholar]
  45. Li D-W, Kenrick B, 1995. A year-round comparison of fungal spores in indoor and outdoor air. Mycologia 87 : 190–195. [Google Scholar]
  46. Goh IO, Viswanathan S, Huang Y, 2000. Airborne bacteria and fungal spores in the indoor environment: a case study in Singapore. Acta Biotechnol 20 : 67–73. [Google Scholar]
  47. Adhikari A, Sen MM, Gupta-Bhattacharya S, Chanda S, 2004. Volumetric assessment of airborne fungi in two sections of a rural indoor cattle shed. Environ Int 29 : 1071–1078. [Google Scholar]
  48. Adhikari A, Bhattacharya S, Chanda S, 1996. Aerobiology and allergenicity of indoor fungal spores in Calcutta during summer months. Indian J Allergy Appl Immunol 10 : 11–19. [Google Scholar]
  49. Atkinson RW, Strachan DP, Anderson R, Hajat S, Emberlin J, 2006. Temporal associations between daily counts of fungal spores and asthma exacerbations. Occup Environ Med 63 : 580–590. [Google Scholar]
  50. Neas LM, Dockery DW, Burge H, Koutrakis P, Speizer FE, 1996. Fungus spores, air pollutants, and other determinants of peak expiratory flow rate in children. Am J Epidemiol 143 : 797–807. [Google Scholar]
  51. Bruce N, Perez-Padilla R, Albalak R, 2000. Indoor air pollution in developing countries: a major environmental and public health challenge. Bull World Health Organ 78 : 1078–1092. [Google Scholar]
  52. Rylander R, 1997. Investigations of the relationship between disease and airborne (1→3)-β-D-glucan in buildings. Mediators Inflamm 6 : 275–277. [Google Scholar]
  53. Douwes J, 2005. (1→3)-β-D-glucans and respiratory health: a review of the scientific evidence. Indoor Air 15 : 160–169. [Google Scholar]
  54. Green BJ, Sercombe JK, Tovey ER, 2005. Fungal fragments and undocumented conidia function as new aeroallergen sources. J Allergy Clin Immunol 115 : 1043–1048. [Google Scholar]
  55. Górny RL, Reponen T, Willeke K, Schmechel D, Robine E, Boissier M, Grinshpun SS, 2002. Fungal fragments as indoor air biocontaminants. Appl Environ Microbiol 68 : 3522–3531. [Google Scholar]
  56. Farenhorst M, Farina D, Scholte E-J, Takken W, Hunt RH, Coetzee M, Knols BGJ, 2008. African water storage pots for the delivery of the entomopathogenic fungus Metarhizium anisopliae to the malaria vectors Anopheles gambiae s.s. and Anopheles funestus. Am J Trop Med Hyg 78 : 910–916. [Google Scholar]

Data & Media loading...

  • Received : 11 Nov 2008
  • Accepted : 12 Feb 2009

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error