Volume 80, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Research relating to host inflammatory processes during malaria infection has focused on Toll-like receptors, membrane-bound receptors implicated in innate sensing, and phagocytosis of parasitized erythrocytes by host cells. This is the first study to examine the role of Nod proteins, members of the Nod-like receptor (NLR) family of cytoplasmic proteins involved in pathogen recognition, in a murine model of cerebral malaria ( ANKA, PbA). Here, we find that mice infected with PbA show no difference in survival or parasitemia compared with wild-type infected animals. However, cytokine levels, notably those associated with NLR activation including interleukin (IL)1-β, KC, and MCP-1, and proteins linked to malaria pathogenesis, such as interferon-γ (IFN-γ), were decreased in the animals. We therefore demonstrate for the first time that Nod proteins are activated in response to parasites, and they play a role in regulating host inflammatory responses during malaria infection.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, Communicable Diseases Cluster, 2000. Severe falciparum malaria. Trans R Soc Trop Med Hyg 94 (Suppl 1): S1–S90. [Google Scholar]
  2. Lou J, Lucas R, Grau GE, 2001. Pathogenesis of cerebral malaria: recent experimental data and possible applications for humans. Clin Microbiol Rev 14 : 810–820. [Google Scholar]
  3. de Souza JB, Riley EM, 2002. Cerebral malaria: the contribution of studies in animal models to our understanding of immunopathogenesis. Microbes Infect 4 : 291–300. [Google Scholar]
  4. Rest JR, 1982. Cerebral malaria in inbred mice. I. A new model and its pathology. Trans R Soc Trop Med Hyg 76 : 410–415. [Google Scholar]
  5. de Kossodo S, Grau GE, 1993. Role of cytokines and adhesion molecules in malaria immunopathology. Stem Cells 11 : 41–48. [Google Scholar]
  6. Grau GE, Fajardo LF, Piguet PF, Allet B, Lambert PH, Vassalli P, 1987. Tumor necrosis factor (cachectin) as an essential mediator in murine cerebral malaria. Science 237 : 1210–1212. [Google Scholar]
  7. Grau GE, Piguet PF, Vassalli P, Lambert PH, 1989. Tumor-necrosis factor and other cytokines in cerebral malaria: experimental and clinical data. Immunol Rev 112 : 49–70. [Google Scholar]
  8. Lucas R, Lou JN, Juillard P, Moore M, Bluethmann H, Grau GE, 1997. Respective role of TNF receptors in the development of experimental cerebral malaria. J Neuroimmunol 72 : 143–148. [Google Scholar]
  9. Piguet PF, Kan CD, Vesin C, 2002. Role of the tumor necrosis factor receptor 2 (TNFR2) in cerebral malaria in mice. Lab Invest 82 : 1155–1166. [Google Scholar]
  10. Gowda DC, 2007. TLR-mediated cell signaling by malaria GPIs. Trends Parasitol 23 : 596–604. [Google Scholar]
  11. Lyke KE, Burges R, Cissoko Y, Sangare L, Dao M, Diarra I, Kone A, Harley R, Plowe CV, Doumbo OK, Sztein MB, 2004. Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect Immun 72 : 5630–5637. [Google Scholar]
  12. Malaguarnera L, Musumeci S, 2002. The immune response to Plasmodium falciparum malaria. Lancet Infect Dis 2 : 472–478. [Google Scholar]
  13. Riley EM, Wahl S, Perkins DJ, Schofield L, 2006. Regulating immunity to malaria. Parasite Immunol 28 : 35–49. [Google Scholar]
  14. Stevenson MM, Riley EM, 2004. Innate immunity to malaria. Nat Rev Immunol 4 : 169–180. [Google Scholar]
  15. Aderem A, 2003. Phagocytosis and the inflammatory response. J Infect Dis 187 (Suppl 2): S340–S345. [Google Scholar]
  16. Akira S, Uematsu S, Takeuchi O, 2006. Pathogen recognition and innate immunity. Cell 124 : 783–801. [Google Scholar]
  17. Herskovits AA, Auerbuch V, Portnoy DA, 2007. Bacterial ligands generated in a phagosome are targets of the cytosolic innate immune system. PLoS Pathog 3 : e51. [Google Scholar]
  18. Medzhitov R, Janeway C Jr, 2000. Innate immune recognition: mechanisms and pathways. Immunol Rev 173 : 89–97. [Google Scholar]
  19. Stuart LM, Ezekowitz RA, 2005. Phagocytosis: elegant complexity. Immunity 22 : 539–550. [Google Scholar]
  20. Chamaillard M, Girardin SE, Viala J, Philpott DJ, 2003. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell Microbiol 5 : 581–592. [Google Scholar]
  21. Inohara, Chamaillard, McDonald C, Nuñez G, 2005. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 74 : 355–383. [Google Scholar]
  22. Medzhitov R, 2001. Toll-like receptors and innate immunity. Nat Rev Immunol 1 : 135–145. [Google Scholar]
  23. Le Bourhis L, Benko S, Girardin SE, 2007. Nod1 and Nod2 in innate immunity and human inflammatory disorders. Biochem Soc Trans 35 : 1479–1484. [Google Scholar]
  24. Fritz JH, Ferrero RL, Philpott DJ, Girardin SE, 2006. Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7 : 1250–1257. [Google Scholar]
  25. Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S, Yamamoto M, Takeuchi O, Itagaki S, Kumar N, Horii T, Akira S, 2005. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med 201 : 19–25. [Google Scholar]
  26. Krishnegowda G, Hajjar AM, Zhu J, Douglass EJ, Uematsu S, Akira S, Woods AS, Gowda DC, 2005. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J Biol Chem 280 : 8606–8616. [Google Scholar]
  27. Parroche P, Lauw FN, Goutagny N, Latz E, Monks BG, Visintin A, Halmen KA, Lamphier M, Olivier M, Bartholomeu DC, Gazzinelli RT, Golenbock DT, 2007. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci USA 104 : 1919–1924. [Google Scholar]
  28. Coban C, Ishii KJ, Uematsu S, Arisue N, Sato S, Yamamoto M, Kawai T, Takeuchi O, Hisaeda H, Horii T, Akira S, 2007. Pathological role of Toll-like receptor signaling in cerebral malaria. Int Immunol 19 : 67–79. [Google Scholar]
  29. Griffith JW, O’Connor C, Bernard K, Town T, Goldstein DR, Bucala R, 2007. Toll-like receptor modulation of murine cerebral malaria is dependent on the genetic background of the host. J Infect Dis 196 : 1553–1564. [Google Scholar]
  30. Lepenies B, Cramer JP, Burchard GD, Wagner H, Kirschning CJ, Jacobs T, 2007. Induction of experimental cerebral malaria is independent of TLR2/4/9. Med Microbiol Immunol 179 : 39–44. [Google Scholar]
  31. Togbe D, Schofield L, Grau GE, Schnyder B, Boissay V, Charron S, Rose S, Beutler B, Quesniaux VF, Ryffel B, 2007. Murine cerebral malaria development is independent of Toll-like receptor signaling. Am J Pathol 170 : 1640–1648. [Google Scholar]
  32. Khor CC, Chapman SJ, Vannberg FO, Dunne A, Murphy C, Ling EY, Frodsham AJ, Walley AJ, Kyrieleis O, Khan A, Aucan C, Segal S, Moore CE, Knox K, Campbell SJ, Lienhardt C, Scott A, Aaby P, Sow OY, Grignani RT, Sillah J, Sirugo G, Peshu N, Williams TN, Maitland K, Davies RJ, Kwiatkowski DP, Day NP, Yala D, Crook DW, Marsh K, Berkley JA, O’Neill LA, Hill AV, 2007. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet 39 : 523–528. [Google Scholar]
  33. Mockenhaupt FP, Cramer JP, Hamann L, Stegemann MS, Eckert J, Oh NR, Otchwemah RN, Dietz E, Ehrhardt S, Schroder NW, Bienzle U, Schumann RR, 2006. Toll-like receptor (TLR) polymorphisms in African children: common TLR-4 variants predispose to severe malaria. Proc Natl Acad Sci USA 103 : 177–182. [Google Scholar]
  34. Carneiro LA, Magalhaes JG, Tattoli I, Philpott DJ, Travassos LH, 2008. Nod-like proteins in inflammation and disease. J Pathol 214 : 136–148. [Google Scholar]
  35. Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jehanno M, Viala J, Tedin K, Taha MK, Labigne A, Zahringer U, Coyle AJ, DiStefano PS, Bertin J, Sansonetti PJ, Philpott DJ, 2003. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300 : 1584–1587. [Google Scholar]
  36. Girardin SE, Boneca IG, Viala J, Chamaillard M, Labigne A, Thomas G, Philpott DJ, Sansonetti PJ, 2003. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 278 : 8869–8872. [Google Scholar]
  37. Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G, Flavell RA, 2005. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307 : 731–734. [Google Scholar]
  38. Viala J, Chaput C, Boneca IG, Cardona A, Girardin SE, Moran AP, Athman R, Memet S, Huerre MR, Coyle AJ, DiStefano PS, Sansonetti PJ, Labigne A, Bertin J, Philpott DJ, Ferrero RL, 2004. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 5 : 1166–1174. [Google Scholar]
  39. Ockenhouse CF, Hu WC, Kester KE, Cummings JF, Stewart A, Heppner DG, Jedlicka AE, Scott AL, Wolfe ND, Vahey M, Burke DS, 2006. Common and divergent immune response signaling pathways discovered in peripheral blood mononuclear cell gene expression patterns in presymptomatic and clinically apparent malaria. Infect Immun 74 : 5561–5573. [Google Scholar]
  40. John CC, Panoskaltsis-Mortari A, Opoka RO, Park GS, Orchard PJ, Jurek AM, Idro R, Byarugaba J, Boivin MJ, 2008. Cerebrospinal fluid cytokine levels and cognitive impairment in cerebral malaria. Am J Trop Med Hyg 78 : 198–205. [Google Scholar]
  41. John CC, Park GS, Sam-Agudu N, Opoka RO, Boivin MJ, 2008. Elevated serum levels of IL-1ra in children with Plasmodium falciparum malaria are associated with increased severity of disease. Cytokine 41 : 204–208. [Google Scholar]
  42. Ouma C, Davenport GC, Awandare GA, Keller CC, Were T, Otieno MF, Vulule JM, Martinson J, Ong’echa JM, Ferrell RE, Perkins DJ, 2008. Polymorphic variability in the interleukin (IL)-1beta promoter conditions susceptibility to severe malarial anemia and functional changes in IL-1beta production. J Infect Dis 198 : 1219–1226. [Google Scholar]
  43. Raices RM, Kannan Y, Sarkar A, Bellamkonda-Athmaram V, Wewers MD, 2008. A synergistic role for IL-1beta and TNFalpha in monocyte-derived IFNgamma inducing activity. Cytokine 44 : 234–241. [Google Scholar]
  44. Yanez DM, Manning DD, Cooley AJ, Weidanz WP, van der Heyde HC, 1996. Participation of lymphocyte subpopulations in the pathogenesis of experimental murine cerebral malaria. J Immunol 157 : 1620–1624. [Google Scholar]
  45. Amani V, Vigario AM, Belnoue E, Marussig M, Fonseca L, Mazier D, Renia L, 2000. Involvement of IFN-gamma receptor-medicated signaling in pathology and anti-malarial immunity induced by Plasmodium berghei infection. Eur J Immunol 30 : 1646–1655. [Google Scholar]
  46. Lovegrove FE, Gharib SA, Patel SN, Hawkes CA, Kain KC, Liles WC, 2007. Expression microarray analysis implicates apoptosis and interferon-responsive mechanisms in susceptibility to experimental cerebral malaria. Am J Pathol 171 : 1894–1903. [Google Scholar]
  47. Pedra JH, Sutterwala FS, Sukumaran B, Ogura Y, Qian F, Montgomery RR, Flavell RA, Fikrig E, 2007. ASC/PYCARD and caspase-1 regulate the IL-18/IFN-gamma axis during Anaplasma phagocytophilum infection. J Immunol 179 : 4783–4791. [Google Scholar]
  48. Mitchell AJ, Hansen AM, Hee L, Ball HJ, Potter SM, Walker JC, Hunt NH, 2005. Early cytokine production is associated with protection from murine cerebral malaria. Infect Immun 73 : 5645–5653. [Google Scholar]
  49. Ferwerda G, Girardin SE, Kullberg BJ, Le Bourhis L, de Jong DJ, Langenberg DM, van Crevel R, Adema GJ, Ottenhoff TH, Van der Meer JW, Netea MG, 2005. NOD2 and Toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog 1 : 279–285. [Google Scholar]
  50. Rosenstiel P, Fantini M, Brautigam K, Kuhbacher T, Waetzig GH, Seegert D, Schreiber S, 2003. TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology 124 : 1001–1009. [Google Scholar]
  51. Takahashi Y, Isuzugawa K, Murase Y, Imai M, Yamamoto S, Iizuka M, Akira S, Bahr GM, Momotani E, Hori M, Ozaki H, Imakawa K, 2006. Up-regulation of NOD1 and NOD2 through TLR4 and TNF-alpha in LPS-treated murine macrophages. J Vet Med Sci 68 : 471–478. [Google Scholar]
  52. Hanum PS, Hayano M, Kojima S, 2003. Cytokine and chemokine responses in a cerebral malaria-susceptible or -resistant strain of mice to Plasmodium berghei ANKA infection: early chemokine expression in the brain. Int Immunol 15 : 633–640. [Google Scholar]

Data & Media loading...

  • Received : 12 May 2008
  • Accepted : 18 Jan 2009

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error