1921
Volume 80, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Newly synthesized pyrazole carbohydrazide derivatives with substituents X = Br/Y = NO and X = NO/Y = Cl were independently investigated in the CBA mouse model of cutaneous leishmaniasis. Animals were infected with and treated two weeks after the parasitic infection with the pyrazole carbohydrazides for 45 days. Oral treatment with both compounds controlled evolution of footpad cutaneous lesions and dissemination of parasites to draining lymph nodes. Nitric oxide generation was observed in supernatants of lymph node cells from infected CBA mice that were treated with these compounds. The pyrazole carbohydrazide derivatives did not show any toxicity or cause alterations in body weight, plasma concentrations of alanine aminotransferase and aspartate aminotransferase, and urinary creatinine levels, but promoted a small decrease in blood neutrophils. These results provide new perspectives on the development of drugs with activities against leishmaniasis.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.2009.80.568
2009-04-01
2017-09-21
Loading full text...

Full text loading...

/deliver/fulltext/14761645/80/4/0800568.html?itemId=/content/journals/10.4269/ajtmh.2009.80.568&mimeType=html&fmt=ahah

References

  1. Desjeux P, 2004. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27 : 305–318.
  2. Barral A, Pedral-Sampaio D, Grimaldi Junior G, Momen H, McMahon-Pratt D, Ribeiro de Jesus A, Almeida R, Badaro R, Barral-Netto M, Carvalho EM, Johnson Jr WD, 1991. Leishmaniasis in Bahia, Brazil: evidence that Leishmania amazonensis produces a wide spectrum of clinical disease. Am J Trop Med Hyg 44 : 536–546.
  3. Leon LL, Barral A, Machado GMC, Grimaldi G Jr, 1992. Antigenic differences among Leishmania amazonensis isolates and their relationships with distinct clinical forms of the disease. Mem Inst Oswaldo Cruz 87 : 229–234.
  4. Azeredo-Coutinho RB, Conceição-Silva F, Schubach A, Cupolillo E, Quintella LP, Madeira MF, Pacheco RS, Valete-Rosalino CM, Mendonça SC, 2007. First report of diffuse cutaneous leishmaniasis and Leishmania amazonensis infection in Rio de Janeiro State, Brazil. Trans R Soc Trop Med Hyg 101 : 735–737.
  5. Herwaldt BL, Berman JD, 1992. Recommendations for treating leishmaniasis with sodium stibogluconate (Pentostam) and review of pertinent clinical studies. Am J Trop Med Hyg 46 : 296–306.
  6. Croft SL, Coombs GH, 2003. Leishmaniasis current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 19 : 502–508.
  7. Sundar S, 2001. Treatment of visceral leishmaniasis. Med Microbiol Immunol (Berl) 190 : 89–92.
  8. Croft SL, Vivas L, Brooker S, 2003. Recent advances in research and control of malaria, leishmaniasis, trypanosomiasis and schistosomiasis. East Mediterr Health J 9 : 518–533.
  9. Croft SL, Sundar S, Fairlamb AH, 2006. Drug resistance in and leishmaniasis. Clin Microbiol Rev 19 : 111–126.
  10. Barreiro EJ, Fraga CA, Miranda Rodrigues AL, 2002. A química medicinal de N-acilidrazonas: novos compostos-protótipos de fármacos analgésicos, antiinflamatórios e anti-trombóticos. Quim Nova 25 : 129–148.
  11. Rostom SA, Shalaby MA, El-Demellawy MA, 2003. Polysubstituted pyrazoles, part 5. Synthesis of new 1-(4-chlorophenyl)-4-hydroxy-1H-pyrazole-3-carboxylic acid hydrazide analogs and some derived ring systems. A novel class of potential antitumor and anti-HCV agents. Eur J Med Chem 38 : 959–974.
  12. Bernardino AM, Gomes AO, Charret KS, Freitas AC, Machado GM, Canto-Cavalheiro MM, Leon LL, Amaral VF, 2006. Synthesis and leishmanicidal activities of 1-(4-X-phenyl)-N′-[(4-Y-phenyl)methylene]-1H-pyrazole-4-carbohydrazides. Eur J Med Chem 41 : 80–87.
  13. Grimaldi G Jr, David JR, McMahon-Pratt D, 1987. Identification and distribution of New World Leishmania species characterized by serodeme analysis using monoclonal antibodies, 1987. Am J Trop Med Hyg 36: 270–287. Erratum in Am J Trop Med Hyg 37 : 414.
  14. Lima HC, Titus RG, 1996. Effects of sand fly vector saliva on development of cutaneous lesions and the immune response to Leishmania braziliensis in BALB/c mice. Infect Immun 64 : 5442–5445.
  15. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR, 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem 126 : 131–138.
  16. Fournet A, Ferreira ME, Rojas de Arias A, Torres De Ortiz S, Fuentes S, Nakayama H, Schinini A, Hocquemiller R, 1996. In vivo efficacy of oral and intralesional administration of 2-substituted quinolines in experimental treatment of new world cutaneous leishmaniasis caused by Leishmania amazonensis. Antimicrob Agents Chemother 40 : 2447–2451.
  17. Alves CR, Benévolo de Andrade TC, Alves JL, Pirmez C, 2004. Th1 and Th2 immunological profile induced by cysteine proteinase in murine leishmaniasis. Parasite Immunol 26 : 127–135.
  18. Cunha AC, Figueiredo JM, Tributino JL, Miranda AL, Castro HC, Zingali RB, Fraga CA, de Souza MC, Ferreira VF, Barreiro EJ, 2003. Antiplatelet properties of novel N-substituted-phenyl-1,2,3-triazole-4-acylhydrazone derivatives. Bioorg Med Chem 11 : 2051–2059.
  19. Croft SL, Seifert K, Yardley V, 2006. Current scenario of drug development for leishmaniasis. Indian J Med Res 123 : 399–410.
  20. Soto J, Berman J, 2006. Treatment of New World cutaneous leishmaniasis with miltefosine. Trans R Soc Trop Med Hyg 100 : 34–40.
  21. Sundar S, Murray HW, 2005. Availability of miltefosine for the treatment of kala-azar in India. Bull World Health Organ 83 : 394–395.
  22. Saenz RE, Paz H, Berman JD, 1990. Efficacy of ketoconazole against Leishmania braziliensis panamensis cutaneous leishmaniasis. Am J Med 89 : 147–155.
  23. Salmanpour R, Handjani F, Nouhpisheh MK, 2001. Comparative study of the efficacy of oral ketoconazole with intra-lesional meglumine antimoniate (Glucantime) for the treatment of cutaneous leishmaniasis. J Dermatolog Treat 12 : 159–162.
  24. Navin TR, Arana BA, Arana FE, Berman JD, Chajón JF, 1992. Placebo-controlled clinical trial of sodium stibogluconate (Pentostam) versus ketoconazole for treating cutaneous leishmaniasis in Guatemala. J Infect Dis 165 : 528–534.
  25. Beach DH, Goad LJ, Holz GG Jr, 1988. Effects of antimycotic azoles on growth and sterol biosynthesis of Leishmania promastigotes. Mol Biochem Parasitol 31 : 149–162.
  26. Guimarães ET, Santos LA, Ribeiro dos Santos R, Teixeira MM, dos Santos WL, Soares MB, 2006. Role of interleukin-4 and prostaglandin E2 in Leishmania amazonensis infection of BALB/c mice. Microbes Infect 8 : 1219–1226.
  27. Oliveira MR, Alves TR, Pinto AC, Pereira Hde S, Leão-Ferreira LR, Moussatché N, de Frugulhetti IC, Ferreira VF, de Souza MC, 2004. Synthesis and antiviral activities of new pyrazolo[4,--c]quinolin-3-ones and their ribonucleoside derivatives. Nucleosides Nucleotides Nucleic Acids 23 : 735–748.
  28. Tavares D, da Conceição Ribeiro R, Carlos da Silva A, 2006. Inflammatory lesion and parasite load are inversely associated in Leishmania amazonensis infected mice genetically selected according to oral tolerance susceptibility. Microbes Infect 8 : 957–964.
  29. Cunha AC, Figueiredo JM, Tributino JL, Miranda AL, Castro HC, Zingali RB, Fraga CA, de Souza MC, Ferreira VF, Barreiro EJ, 2003. Antiplatelet properties of novel N-substituted-phenyl-1,2,3-triazole-4-acylhydrazone derivatives. Bioorg Med Chem 11 : 2051–2059.
  30. Lima LM, Frattani FS, dos Santos JL, Castro HC, Fraga CA, Zingali RB, Barreiro EJ, 2008. Synthesis and anti-platelet activity of novel arylsulfonate–acylhydrazone derivatives, designed as antithrombotic candidates. Eur J Med Chem 43 : 348–356.
  31. Matheus ME, Oliveira LF, Freitas AC, Carvalho AM, Barreiro EJ, 1991. Antinociceptive property of new 4-acyl-arylhydrazone pyrazole compounds. Braz J Med Biol Res 24 : 1219–1222.
  32. Fraga CA, Barreiro EJ, 2006. Medicinal chemistry of N-acylhydrazones: new lead-compounds of analgesic, antiinflammatory and antithrombotic drugs. Curr Med Chem 13 : 167–198.
  33. Kucukguzel SC, Kucukguzel I, Ulgen M, 2000. Metabolic and chemical studies on N-(4-chlorobenzyl)-N′-benzoylhydrazine. Farmaco 55 : 624–630.
  34. Genin MJ, Biles C, Keiser BJ, Poppe SM, Swaney SM, Tarpley WG, Yagi Y, Romero DL, 2000. Novel 1,5-diphenylpyrazole nonnucleoside HIV-1 reverse transcriptase inhibitors with enhanced activity versus the delavirdine-resistant P236L mutant: lead identification and SAR of 3- substituted derivatives. J Med Chem 43 : 1034–1040.
  35. Storer R, Ashton CJ, Baxter AD, Hann MM, Marr CL, Mason AM, Mo CL, Myers PL, Noble SA, Penn CR, Weir NG, Woods JM, Coe PL, 1999. The synthesis and antiviral activity of 4-fluoro-1-beta-D-ribofuranosyl-1H-pyrazole-3-carboxamide. Nucleosides Nucleotides 18 : 203–216.
  36. Daidone G, Maggio B, Plescia S, Raffa D, Schillaci D, Migliara O, Caruso A, Cutuli VM, Amico-Roxas M, 1998. Synthesis and pharmacological evaluation of 1-methyl-5-[substituted-4 (3H)-oxo-1,2,3-benzotriazin-3-yl]-1H-pyrazole-4-acetic acid derivatives. Farmaco 30 : 350–356.
  37. Gamage SA, Spicer JA, Rewcastle GW, Milton J, Sohal S, Dangerfield W, Mistry P, Vicker N, Charlton PA, Denny WA, 2002. Structure-activity relationships for pyrido-, imidazo-, pyrazolo-, pyrazino-, and pyrolophenazinecarboxamides as topoisomerase-targeted anticancer agents. J Med Chem 45 : 740–743.
  38. Palomer A, Cabre F, Pascual J, Campos J, Trujillo MA, Entrena A, Gallo MA, García L, Mauleón D, Espinosa A, 2002. Identification of novel cyclooxygenase-2 selective inhibitors using pharmacophore models. J Med Chem 45 : 1402–1411.
  39. Goetzl EJ, Pickett WC, 1980. The human PMN leukocyte chemotactic activity of complex hydroxy-eicosatetraenoic acids (HETEs). J Immunol 125 : 1789–1791.
  40. Pettipher ER, Salter ED, Breslow R, Conklyn MJ, Farrell CA, Hingorani GP, Salter ED, Hackman BC, Wimberly DJ, 1993. Specific inhibition of leukotriene B4 (LTB4)-induced neutrophil emigration by 20-hydroxy LTB4: implications for the regulation of inflammatory responses. Br J Pharmacol 110 : 423–427.
  41. Black DL, Marks TA, 1992. Role of maternal toxicity in assessing developmental toxicity in animals: a discussion. Regul Toxicol Pharmacol 16 : 189–202.
  42. Bhattacharjee R, Sil PC, 2006. Protein isolate from the herb, Phyllanthus niruri L. (Euphorbiaceae), plays hepatoprotective role against carbon tetrachlorideinduced liver damage via its antioxidant properties. Food Chem Toxicol 45 : 817–826.
  43. Liew FY, Li Y, Millott S, 1990. Tumor necrosis factor-alpha synergizes with IFN-gamma in mediating killing of Leishmania major through the induction of nitric oxide. J Immunol 145 : 4306–4310.
  44. Mukbel RM, Patten C Jr, Gibson K, Ghosh M, Petersen C, Jones DE, 2007. Macrophage killing of Leishmania amazonensis amastigotes requires both nitric oxide and superoxide. Am J Trop Med Hyg 76 : 669–675.
  45. Lemos de Souza V, Ascenção Souza J, Correia Silva TM, Sampaio Tavares Veras P, Rodrigues de-Freitas LA, 2000. Different Leishmania species determine distinct profiles of immune and histopathological responses in CBA mice. Microbes Infect 2 : 1807–1815.
  46. Woods ML, Mayer J, Evans TG, Hibbs JB Jr, 1994. Antiparasitic effects of nitric oxide in an in vitro murine model of Chlamydia trachomatis infection and an in vivo murine model of Leishmania major infection. Immunol Ser 60 : 179–195.
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2009.80.568
Loading
/content/journals/10.4269/ajtmh.2009.80.568
Loading

Data & Media loading...

  • Received : 21 Jul 2008
  • Accepted : 16 Sep 2008

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error