Volume 80, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Flow cytometric analyses were performed to evaluate HLA-DR activated T lymphocytes (Tact; CD3 /CD4 /CD25) and T regulatory cells (Treg; CD3 /CD4/CD25) in the circulation of children 8–10 years of age living in an area endemic for both and in western Kenya. Those children with only had a higher mean percentage of HLA-DR Tact than those who were co-infected with these two intravascular parasites. The proportion of circulating Treg was comparable in children with only schistosomiasis and both schistosomiasis and malaria. However, the mean level of memory Treg (Treg expressing CD45RO ) in those with dual infections was lower than in children with schistosomiasis alone. These imbalances in Tact and Treg memory subsets in children infected with both schistosomiasis and malaria may be related to the differential morbidity or course of infection attributed to coinfections with these parasites.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Brooker S, Akwale W, Pullan R, Estambale B, Clarke SE, Snow RW, Hotez JP, 2007. Epidemiology of Plasmodium-helminth co-infection in Africa: populations at risk, potential impact on anemia, and prospects for combining control. Am J Trop Med Hyg 77 : 88–98. [Google Scholar]
  2. Pierrot C, Wilson MS, Lallet H, Laffite S, Jones MF, Daher W, Capron M, Dunne DW, Khalife J, 2006. Identification of a novel antigen of Schistosoma mansoni shared with Plasmodium falciparum and evaluation of different cross-reactive antibody subclasses induced by human schistosomiasis and malaria. Infect Immun 74 : 3347–3354. [Google Scholar]
  3. Booth M, Vennervald BJ, Kenty L, Butterworth AE, Kariuki HC, Kadzo H, Ireri E, Amaganga C, Kimani G, Mwatha JK, Otedo A, Ouma JH, Muchiri E, Dunne DW, 2004. Micro-geographical variation in exposure to Schistosoma mansoni and malaria, and exacerbation of splenomegaly in Kenyan school-aged children. BMC Infect Dis 4 : 13. [Google Scholar]
  4. Briand S, Watier L, Jay LEH, Garcia A, Cot M, 2005. Coinfection with Plasmodium falciparum and Schistosoma haematobium: protective effect of schistosomiasis on malaria in senegaleese children? Am J Trop Med Hyg 72 : 702–707. [Google Scholar]
  5. Le Hesran JY, Akaina JN, Diaye EHM, Dia M, Sengor P, Konate L, 2004. Severe malaria attack associated with high prevalence of Ascaris lumbricoides infection among children in rural Senegal. Am J Trop Med Hyg 98 : 397–399. [Google Scholar]
  6. Lyke KE, Dicko A, Dabo A, Sangare L, Kone A, Coulibaly D, Guido A, Traore K, Daou M, Diarra I, Sztein MB, Plowe CB, Doumbo KO, 2005. Association of Schistosoma haematobium infection with protection against acute Plasmodium falciparum malaria in Malian children. Am J Trop Med Hyg 73 : 1124–1130. [Google Scholar]
  7. Mwangi TW, Bethony JM, Brooker S, 2006. Malaria and helminthic interactions in humans: an epidemiological viewpoint. Ann Trop Med Parasitol 100 : 551–570. [Google Scholar]
  8. Nacher M, Gay F, Sighhasivanon P, Krudsood S, Treeprasertsuk S, Mazier D, Vouldoukis I, Looareesuwan S, 2000. Ascaris lumricoides infection is associated with protection from cerebral malaria. Parasite Immunol 22 : 107–113. [Google Scholar]
  9. Petney TN, Andrews RH, 1998. Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. Int J Parasitol 28 : 377–393. [Google Scholar]
  10. Druilhe P, Tall A, 2005. Worms can worsen malaria: towards a new means to roll back malaria. Trends Parasitol 21 : 359–362. [Google Scholar]
  11. Stothaard JR, Gabrieli AF, 2007. Schistosomiasis in African infants and preschool children: to treat or not to treat. Trends Immunol 23 : 83–88. [Google Scholar]
  12. Engels D, Chitsulo L, Montresor A, Savioli L, 2002. The global epidemiological situation of schistosomiaisis and new approaches to control and research. Act Trop 82 : 139–146. [Google Scholar]
  13. Gryseels B, Polman K, Clerinx J, Kestens L, 2006. Human schistosomiasis. Lancet 368 : 1106–1118. [Google Scholar]
  14. Millington OR, Gibson BV, Rush CM, Zinselmeyer R, Stephen P, Garside P, Brewer MJ, 2007. Malaria impairs T cell clustering and immune priming despite normal signal 1 from dendritic cells. PLoS Pathog 3 : 143. [Google Scholar]
  15. Watanabe K, Mwinzi PMN, Black CL, Muok EOM, Karanja DMS, Secor WE, Colley DG, 2007. T regulatory cells decrease in people infected with Schistosoma mansoni upon effective treatment. Am J Trop Med Hyg 77 : 676–682. [Google Scholar]
  16. Walther M, Tongren JE, Andrews L, Korbel D, King E, Fletcher H, Andersen RF, Bejon P, Thompson F, Dunachie SJ, Edele F, de Souza JB, Sinden RE, Gilbert SC, Riley EM, Hill AV, 2005. Upregulation of TGF beta, FOXP3 and CD4+CD25+ regulatory T cell correlates with more rapid parasite growth in human malaria infection. Immunity 23 : 287–296. [Google Scholar]
  17. Handzel T, Karanja DMS, Addis DG, Allen WH, Rosen DH, Colley DG, Andove J, Slutsker L, Secor WE, 2003. Geographic distribution of schistosomiasis and soil transmitted helminths in Western Kenya: implication of antihelminthic mass treatment. Am J Trop Med Hyg 69 : 318–323. [Google Scholar]
  18. Bayry J, Triebel F, Kaveri SV, Tough DF, 2007. Human dendritic cells acquire a semimature phenotype and lymph node homing potential through interaction with CD4+CD25+ regulatory T cells. J Immunol 178 : 4184–4193. [Google Scholar]
  19. Duggleby RC, Shaw TN, Jarvis LB, Gaston JS, 2007. CD27 expression discriminates between regulatory and non-regulatory cells after expansion of human peripheral blood CD4+ CD25+ cells. Immunol 121 : 129–139. [Google Scholar]
  20. Keever-Taylor CA, Browning MB, Johnson BD, Truitt RL, Bredeson CN, Behn B, Tsao A, 2007. Rapamycin enriches for CD4 (+) CD25 (+) CD27 (+) Foxp3 (+) regulatory T cells in ex vivo-expanded CD25-enriched products from healthy donors and patients’ with multiple sclerosis. Cytotherapy 9 : 144–157. [Google Scholar]
  21. Longhi MS, Hussain MJ, Mitry RR, Arora SK, Mieli-Vergani G, Vergano D, Ma Y, 2006. Functional study of CD4+CD25+ regulatory T cells in health and autoimmune hepatitis. J Immunol 176 : 4484–4491. [Google Scholar]
  22. Strauss L, Whiteside TL, Knights A, Bergmann C, Knuth A, Zippelius A, 2007. Selective survival of naturally occurring human CD4+CD25+Foxp3+ regulatory T cells cultured with rapamycin. J Immunol 178 : 320–329. [Google Scholar]
  23. Valencia X, Yarboro C, Illei G, Lipsky PE, 2007. Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol 178 : 25–88. [Google Scholar]
  24. Baecher-Allan C, Brown JA, Freeman GL, Hafler DA, 2001. CD4+CD25 high regulatory cells in human peripheral blood. J Immunol 167 : 1245–1253. [Google Scholar]
  25. Sumida Y, Nakamura K, Kanayama K, Akiho H, Teshima T, Takayanagi R, 2008. Preparation of functionally preserved CD4+ CD25high regulatory TT cells from leukapheresis products from ulcerative colitis patients, applicable to regulatory T-cell transfer therapy. Cytotherapy 10 : 698–710. [Google Scholar]
  26. Roederer M, 2001. Spectral compensation for flow cytometry: visualization artifacts, limitations and caveats. Cytometry 45 : 194–205. [Google Scholar]
  27. Tung JW, Parks DR, Moore A, Herzenberg LA, Herzenberg AL, 2004. New approaches to fluorescence compensation and visualization of FACS data. Clin Immunol 110 : 277–283. [Google Scholar]
  28. Kaushik S, Vajpayee M, Sreenivas V, Pradeep S, 2006. Correlation of T-lymphocyte subpopulations with immunological markers in HIV-1-infected Indian patients. Clin Immunol 119 : 330–338. [Google Scholar]
  29. Machura E, Mazur B, Pieniazel W, Karczewska K, 2008. Expression of naive/memory (CD45RA/CD45RO) markers by peripheral blood CD4+ and CD8+ T cells in children with asthma. Arc Immuno Therap Eep 56 : 55–62. [Google Scholar]
  30. Remoue F, Diallo TO, Angeli V, Herve M, deClercq D, Scharcht AM, Charrier N, Capron M, Vercruysse A, Ly A, Capron A, Riveau G, 2003. Malaria coinfection in children influences antibodies response to schistosome antigens and inflammatory markers associated with morbidity. Trans R Soc Trop Med Hyg 97 : 361–364. [Google Scholar]
  31. Wilson S, Vennervald BJ, Kadzo H, Ireri E, Amaganga C, Booth M, Kariuki HC, Mwatha JK, Kimani G, Ouma JH, Muchiri E, Dunne DW, 2007. Hepatosplenomegaly in Kenyan schoolchildren: exacerbation by concurrent chronic exposure to malaria and Schistosoma mansoni infection. Trop Med Int Health 12 : 1442–1449. [Google Scholar]
  32. Wilson S, Jones FM, Mwatha JK, Kimani G, Booth M, Kariuki HC, Vennervald BJ, Ouma JH, Muchiri E, Dunne DW, 2008. Hepatosplenomegaly is associated with low regulatory and Th2 responses to schistosome antigens in childhood schistosomiasiss and malaria coinfection. Infect Immun 76 : 2212–2218. [Google Scholar]

Data & Media loading...

Corrected figure 2

  • Received : 25 Sep 2008
  • Accepted : 08 Dec 2008

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error