Volume 80, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Previous attempts to define dengue virus (DENV) tropism in human autopsy tissues have detected DENV antigens that are abundant in circulation during severe dengue, and thus may be present in uninfected cells. To better define DENV tropism, we performed immunostaining for the DENV2 nonstructural protein 3 (NS3) in humans and in a mouse model of DENV infection. In mice, NS3 was detected in phagocytes of the spleen and lymph node, hepatocytes in liver, and myeloid cells in bone marrow. In human autopsy tissues, NS3 was present in phagocytes in lymph node and spleen, alveolar macrophages in lung, and perivascular cells in brain. This protein was also found in hepatocytes in liver and endothelial cells in spleen, although NS3 was not present in endothelium in any other tissue. Thus, NS3-specific immunostaining supports roles for infected phagocytes, hepatocytes, and, to a limited degree, endothelial cells in the pathogenesis of severe dengue.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Gubler DJ, 1998. Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11 : 480–496. [Google Scholar]
  2. Mackenzie JS, Gubler DJ, Petersen LR, 2004. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10 : S98–S109. [Google Scholar]
  3. Bhoopat L, Bhamarapravati N, Attasiri C, Yoksarn S, Chaiwun B, Khunamornpong S, Sirisanthana V, 1996. Immunohistochemical characterization of a new monoclonal antibody reactive with dengue virus-infected cells in frozen tissue using immunoperoxidase technique. Asian Pac J Allergy Immunol 14 : 107–113. [Google Scholar]
  4. Boonpucknavig S, Boonpucknavig V, Bhamarapravati N, Nimmannitya S, 1979. Immunofluorescence study of skin rash in patients with dengue hemorrhagic fever. Arch Pathol Lab Med 103 : 463–466. [Google Scholar]
  5. Couvelard A, Marianneau P, Bedel C, Drouet MT, Vachon F, Henin D, Deubel V, 1999. Report of a fatal case of dengue infection with hepatitis: demonstration of dengue antigens in hepatocytes and liver apoptosis. Hum Pathol 30 : 1106–1110. [Google Scholar]
  6. Hall WC, Crowell TP, Watts DM, Barros VL, Kruger H, Pinheiro F, Peters CJ, 1991. Demonstration of yellow fever and dengue antigens in formalin-fixed paraffin-embedded human liver by immunohistochemical analysis. Am J Trop Med Hyg 45 : 408–417. [Google Scholar]
  7. Huerre MR, Lan NT, Marianneau P, Hue NB, Khun H, Hung NT, Khen NT, Drouet MT, Huong VT, Ha DQ, Buisson Y, Deubel V, 2001. Liver histopathology and biological correlates in five cases of fatal dengue fever in Vietnamese children. Virchows Arch 438 : 107–115. [Google Scholar]
  8. Jessie K, Fong MY, Devi S, Lam SK, Wong KT, 2004. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J Infect Dis 189 : 1411–1418. [Google Scholar]
  9. Miagostovich MP, Ramos RG, Nicol AF, Nogueira RM, Cuzzi-Maya T, Oliveira AV, Marchevsky RS, Mesquita RP, Schatzmayr HG, 1997. Retrospective study on dengue fatal cases. Clin Neuropathol 16 : 204–208. [Google Scholar]
  10. Ramos C, Sanchez G, Pando RH, Baquera J, Hernandez D, Mota J, Ramos J, Flores A, Llausas E, 1998. Dengue virus in the brain of a fatal case of hemorrhagic dengue fever. J Neurovirol 4 : 465–468. [Google Scholar]
  11. Libraty DH, Young PR, Pickering D, Endy TP, Kalayanarooj S, Green S, Vaughn DW, Nisalak A, Ennis FA, Rothman AL, 2002. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis 186 : 1165–1168. [Google Scholar]
  12. Murgue B, Roche C, Chungue E, Deparis X, 2000. Prospective study of the duration and magnitude of viraemia in children hospitalised during the 1996–1997 dengue-2 outbreak in French Polynesia. J Med Virol 60 : 432–438. [Google Scholar]
  13. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, Raengsakulrach B, Rothman AL, Ennis FA, Nisalak A, 2000. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181 : 2–9. [Google Scholar]
  14. Durbin AP, Vargas MJ, Wanionek K, Hammond SN, Gordon A, Rocha C, Balmaseda A, Harris E, 2008. Phenotyping of peripheral blood mononuclear cells during acute dengue illness demonstrates infection and increased activation of monocytes in severe cases compared to classic dengue fever. Virology 376 : 429–435. [Google Scholar]
  15. Kyle JL, Beatty PR, Harris E, 2007. Dengue virus infects macrophages and dendritic cells in a mouse model of infection. J Infect Dis 195 : 1808–1817. [Google Scholar]
  16. Lindenbach B, Rice CM, 2001. Flaviviridae: the viruses and their replication. Knipe DM, Howley PM, eds. Fields Virology. Fourth edition. Philadelphia: Lippincott Williams & Wilkins, 991–1042.
  17. Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, Harris E, 2004. Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol 78 : 2701–2710. [Google Scholar]
  18. Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV, 1992. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J Clin Microbiol 30 : 545–551. [Google Scholar]
  19. Shresta S, Sharar KL, Prigozhin DM, Beatty PR, Harris E, 2006. A murine model for dengue virus-induced lethal disease with increased vascular permeability. J Virol 80 : 10208–10217. [Google Scholar]
  20. Calvert AE, Huang CY, Kinney RM, Roehrig JT, 2006. Non-structural proteins of dengue 2 virus offer limited protection to interferon-deficient mice after dengue 2 virus challenge. J Gen Virol 87 : 339–346. [Google Scholar]
  21. Johnson AJ, Roehrig JT, 1999. New mouse model for dengue virus vaccine testing. J Virol 73 : 783–786. [Google Scholar]
  22. Schul W, Liu W, Xu HY, Flamand M, Vasudevan SG, 2007. A dengue fever viremia model in mice shows reduction in viral replication and suppression of the inflammatory response after treatment with antiviral drugs. J Infect Dis 195 : 665–674. [Google Scholar]
  23. Rothwell SW, Putnak R, La Russa VF, 1996. Dengue-2 virus infection of human bone marrow: characterization of dengue-2 antigen-positive stromal cells. Am J Trop Med Hyg 54 : 503–510. [Google Scholar]
  24. Nakao S, Lai CJ, Young NS, 1989. Dengue virus, a flavivirus, propagates in human bone marrow progenitors and hematopoietic cell lines. Blood 74 : 1235–1240. [Google Scholar]
  25. King AD, Nisalak A, Kalayanrooj S, Myint KS, Pattanapanyasat K, Nimmannitya S, Innis BL, 1999. B cells are the principal circulating mononuclear cells infected by dengue virus. Southeast Asian J Trop Med Public Health 30 : 718–728. [Google Scholar]
  26. Blackley S, Kou Z, Chen H, Quinn M, Rose RC, Schlesinger JJ, Coppage M, Jin X, 2007. Primary human splenic macrophages, but not T or B cells, are the principal target cells for dengue virus infection in vitro. J Virol 81 : 13325–13334. [Google Scholar]
  27. Kou Z, Quinn M, Chen H, Rodrigo WW, Rose RC, Schlesinger JJ, Jin X, 2008. Monocytes, but not T or B cells, are the principal target cells for dengue virus (DV) infection among human peripheral blood mononuclear cells. J Med Virol 80 : 134–146. [Google Scholar]
  28. Gubler DJ, Zaki SR, 1998. Dengue and other viral hemorrhagic fevers. Nelson AM, Horsburgh CR, eds. Pathology of Emerging Infections 2. Washington, DC: American Society for Microbiology Press, 43–71.
  29. Marianneau P, Steffan AM, Royer C, Drouet MT, Jaeck D, Kirn A, Deubel V, 1999. Infection of primary cultures of human Kupffer cells by dengue virus: no viral progeny synthesis, but cytokine production is evident. J Virol 73 : 5201–5206. [Google Scholar]
  30. Kuo CH, Tai DI, Chang-Chien CS, Lan CK, Chiou SS, Liaw YF, 1992. Liver biochemical tests and dengue fever. Am J Trop Med Hyg 47 : 265–270. [Google Scholar]
  31. Mohan B, Patwari AK, Anand VK, 2000. Hepatic dysfunction in childhood dengue infection. J Trop Pediatr 46 : 40–43. [Google Scholar]
  32. de Souza LJ, Nogueira RM, Soares LC, Soares CE, Ribas BF, Alves FP, Vieira FR, Pessanha FE, 2007. The impact of dengue on liver function as evaluated by aminotransferase levels. Braz J Infect Dis 11 : 407–410. [Google Scholar]
  33. Rosen L, Khin MM, U T, 1989. Recovery of virus from the liver of children with fatal dengue: reflections on the pathogenesis of the disease and its possible analogy with that of yellow fever. Res Virol 140 : 351–360. [Google Scholar]
  34. Ling LM, Wilder-Smith A, Leo YS, 2007. Fulminant hepatitis in dengue haemorrhagic fever. J Clin Virol 38 : 265–268. [Google Scholar]
  35. Suksanpaisan L, Cabrera-Hernandez A, Smith DR, 2007. Infection of human primary hepatocytes with dengue virus serotype 2. J Med Virol 79 : 300–307. [Google Scholar]
  36. Nogueira RM, Schatzmayr HG, Miagostovich MP, Farias MF, Farias Filho JD, 1988. Virological study of a dengue type 1 epidemic at Rio de Janeiro. Mem Inst Oswaldo Cruz 83 : 219–225. [Google Scholar]
  37. Monath TP, Brinker KR, Chandler FW, Kemp GE, Cropp CB, 1981. Pathophysiologic correlations in a rhesus monkey model of yellow fever with special observations on the acute necrosis of B cell areas of lymphoid tissues. Am J Trop Med Hyg 30 : 431–443. [Google Scholar]
  38. Tigertt WD, Berge TO, Gochenour WS, Gleiser CA, 1960. Experimental yellow fever. Trans N Y Acad Sci 22 : 323–333. [Google Scholar]
  39. Kumar R, Tripathi S, Tambe JJ, Arora V, Srivastava A, Nag VL, 2008. Dengue encephalopathy in children in northern India: clinical features and comparison with non dengue. J Neurol Sci 269 : 41–48. [Google Scholar]
  40. Lum LC, Lam SK, Choy YS, George R, Harun F, 1996. Dengue encephalitis: a true entity? Am J Trop Med Hyg 54 : 256–259. [Google Scholar]
  41. Andrews BS, Theofilopoulos AN, Peters CJ, Loskutoff DJ, Brandt WE, Dixon FJ, 1978. Replication of dengue and junin viruses in cultured rabbit and human endothelial cells. Infect Immun 20 : 776–781. [Google Scholar]
  42. Avirutnan P, Malasit P, Seliger B, Bhakdi S, Husmann M, 1998. Dengue virus infection of human endothelial cells leads to chemokine production, complement activation, and apoptosis. J Immunol 161 : 6338–6346. [Google Scholar]
  43. Miller JL, deWet BJ, Martinez-Pomares L, Radcliffe CM, Dwek RA, Rudd PM, Gordon S, 2008. The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog 4 : e17. [Google Scholar]
  44. Martinez-Pomares L, Hanitsch LG, Stillion R, Keshav S, Gordon S, 2005. Expression of mannose receptor and ligands for its cysteine-rich domain in venous sinuses of human spleen. Lab Invest 85 : 1238–1249. [Google Scholar]

Data & Media loading...

  • Received : 23 Jun 2008
  • Accepted : 11 Nov 2008

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error