1921
Volume 80, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Arthritogenicity, as determined by joint swelling and synovial histology, was compared between or within two genospecies that cause Lyme arthritis in humans. The spirochete burden in bladder tissue (a site of spirochete persistence) was documented by quantitative polymerase chain reaction, and immune responses were analyzed. In C3H/HeJ mice, three isolates and two of the three isolates induced severe arthritis and swelling. Previous designation as invasive or noninvasive , or RNA spacer type of did not determine arthritis severity induced by isolates. Compared with the other five isolates, the PBi isolate induced significantly less arthritis, a lower humoral immune response, and persisted at a much lower level in bladder tissue. However, PBi isolates induced similar antigen-specific inflammatory T cell responses from the local draining lymph node. Thus, diverse and isolates were highly arthritogenic in immune competent mice.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.2009.80.252
2009-02-01
2017-09-21
Loading full text...

Full text loading...

/deliver/fulltext/14761645/80/2/0800252.html?itemId=/content/journals/10.4269/ajtmh.2009.80.252&mimeType=html&fmt=ahah

References

  1. Steere AC, 2001. Lyme disease. N Engl J Med 345 : 115–125.
  2. Wang G, van Dam AP, Schwartz I, Dankert J, 1999. Molecular typing of Borrelia burgdorferi sensu lato: taxonomic, epidemiological, and clinical implications. Clin Microbiol Rev 12 : 633–653.
  3. Eiffert H, Karsten A, Thomssen R, Christen HJ, 1998. Characterization of Borrelia burgdorferi strains in Lyme arthritis. Scand J Infect Dis 30 : 265–268.
  4. Oteo JA, Backenson PB, del Mar Vitutia M, Garcia Monco JC, Rodriguez I, Escudero R, Anda P, 1998. Use of the C3H/He Lyme disease mouse model for the recovery of a Spanish isolate of Borrelia garinii from erythema migrans lesions. Res Microbiol 149 : 39–46.
  5. Vasiliu V, Herzer P, Rossler D, Lehnert G, Wilske B, 1998. Heterogeneity of Borrelia burgdorferi sensu lato demonstrated by an OspA- type-specific PCR in synovail fluid from patients with Lyme arthritis. Med Microbiol Immunol (Berl) 187 : 97–102.
  6. Ackermann R, Rehse-Kupper B, Gollmer E, Schmidt R, 1988. Chronic neurologic manifestations of erythema migrans borreliosis. Ann NY Acad Sci 539 : 16–23.
  7. Anthonissen FM, DeKesel M, Hoet PP, Bigaignon GH, 1994. Evidence for the involvement of different genospecies of Borrelia in the clinical outcome of Lyme disease in Belgium. Res Microbiol 145 : 327–331.
  8. Van Dam AP, Kuiper H, Vos K, Widjojokusumo A, De Jongh BM, Spanjaard L, Ramselaar ACP, Kramer MD, Dankert J, 1993. Different genospecies of Borrelia burgdorferi are associated with distinct clinical manifestations of Lyme borreliosis. Clin Infect Dis 17 : 708–717.
  9. Steere AC, Bartenhagen NH, Craft JE, Hutchinson GJ, Newman JH, Rahn DW, Sigal LH, Spieler PH, Stenn KS, Malawista SE, 1983. The early clinical manifestations of Lyme disease. Ann Intern Med 99 : 76–82.
  10. Steere AC, Schoen RT, Taylor E, 1987. The clinical evolution of Lyme arthritis. Ann Intern Med 107 : 725–731.
  11. Asbrink E, Olsson I, Hovmark A, 1986. Erythema chronicum migrans Afzelius in Sweden. A study on 231 patients. Zentralbl Bakteriol Mikrobiol Hyg [A] 263 : 229–236.
  12. Barthold SW, Beck DS, Hansen GM, Terwilliger GA, Moody KD, 1990. Lyme borreliosis in selected strains and ages of laboratory mice. J Infect Dis 162 : 133–138.
  13. Ma Y, Seiler KP, Eichwals EJ, Weis JH, Teuscher C, Weiss JJ, 1998. Distinct characteristics of resistance to Borrelia burgdorferi-induced arthritis in C57BL/6N mice. Infect Immun 66 : 161–168.
  14. Barthold SW, 1996. Lyme borreliosis in the laboratory mouse. J Spirochetal Tick-Borne Dis 3 : 22–44.
  15. Yang L, Weis JH, Eichwald E, Kolbert CP, Persing DH, Weis JJ, 1994. Heritable susceptibility to severe Borrelia burgdorferi-induced arthritis is dominant and is associated with persistence of large numbers of spirochetes in tissues. Infect Immun 62 : 492–500.
  16. Hu CM, Simon M, Kramer MD, Gern L, 1996. Tick factors and in vitro cultivation influence the protein profile, antigenicity and pathogenicity of a cloned Borrelia garinii isolate from Ixodes ricinus hemolymph. Infection 24 : 251–257.
  17. Barthold SW, 1999. Specificity of infection-induced immunity among Borrelia burgdorferi sensu lato species. Infect Immun 67 : 36–42.
  18. Pachner AR, Dail D, Bai Y, Sondey M, Pak L, Narayan K, Cadavid D, 2004. Genotype determines phenotype in experimental Lyme borreliosis. Ann Neurol 56 : 361–370.
  19. Wormser GP, Liveris D, Nowakowski J, Nadelman RB, Cavaliere LF, McKenna D, Holmgren D, Schwartz I, 1999. Association of specific subtypes of Borrelia burgdorferi with hematogenous dissemination in early Lyme disease. J Infect Dis 180 : 720–725.
  20. Wang G, Ojaimi C, Iyer R, Saksenberg V, McClain SA, Wormser GP, Schwartz I, 2001. Impact of genotypic variation of Borrelia burgdorferi sensu stricto on kinetics of dissemination and severity of disease in C3H/HeJ mice. Infect Immun 69 : 4303–4312.
  21. Wang G, Ojaimi C, Wu H, Saksenberg V, Iyer R, Liveris D, McClain SA, Wormser GP, Schwartz I, 2002. Disease severity in a murine model of Lyme borreliosis is associated with the genotype of the infecting Borrelia burgdorferi sensu stricto strain. J Infect Dis 186 : 782–791.
  22. Baranton G, Seinost G, Theodore G, Postic D, Dykhuizen D, 2001. Distinct levels of genetic diversity of Borrelia burgdorferi are associated with different aspects of pathogenicity. Res Microbiol 152 : 149–156.
  23. Lagal V, Postic D, Baranton G, 2002. Molecular diversity of the ospC gene in Borrelia. Impact on phylogeny, epidemiology and pathology. Wien Klin Wochenschr 114 : 562–567.
  24. Barthold SW, Feng S, Bockenstadt LK, Fikrig E, Feen K, 1997. Protective and arthritis-resolving activity in sera of mice infected with Borrelia burgdorferi. Clin Infect Dis 25 : S9–S17.
  25. McKisic MD, Barthold SW, 2000. T-cell-independent responses to Borrelia burgdorferi are critical for protective immunity and resolution of Lyme disease. Infect Immun 68 : 5190–5197.
  26. Feng S, Hodzic E, Barthold SW, 2000. Lyme arthritis resolution with antiserum to a 37-kilodalton Borrelia burgdorferi protein. Infect Immun 68 : 4169–4173.
  27. McKisic MD, Redmond WL, Barthold SW, 2000. Cutting edge: T cell-mediated pathology in murine Lyme borreliosis. J Immunol 164 : 6096–6099.
  28. Sobek V, Birkner N, Falk I, Wurch A, Kirschning CJ, Wagner H, Wallich R, Lamers MC, Simon MM, 2004. Direct toll-like receptor 2 mediated co-stimulation of T cells in the mouse system as a basis for chronic inflammatory joint disease. Arthritis Res Ther 6 : R433–R446.
  29. Pachner AR, Dail D, Bai YB, Sondey M, Pak L, Narayan K, Cadavid D, 2004. Genotype determines phenotype in experimental Lyme borreliosis. Ann Neurol 56 : 361–370.
  30. Liveris D, Wormser GP, Nowakowski J, Nadelman R, Bittker S, Cooper D, Varde S, Moy FH, Forseter G, Pavia CS, Schwartz I, 1996. Molecular typing of Borrelia burgdorferi from Lyme disease patients by PCR-restriction fragment length polymorphism analysis. J Clin Microbiol 34 : 1306–1309.
  31. Glickstein L, Edelstein M, Dong JZ, 2001. Gamma interferon is not required for arthritis resistance in the murine Lyme disease model. Infect Immun 69 : 3737–3743.
  32. Morrison TB, Ma Y, Weis JH, Weis JJ, 1999. Rapid and sensitive quantification of Borrelia burgdorferi-infected mouse tissues by continuous fluorescent monitoring of PCR. J Clin Microbiol 37 : 987–992.
  33. Dong Z, Edelstein M, Glickstein LJ, 1997. CD8+ T cells are activated during the early Th1 and Th2 immune responses in the murine Lyme disease model. Infect Immun 65 : 5334–5337.
  34. Keane-Myers A, Nickell SP, 1995. T cell subset-dependent modulation of immunity to Borrelia burgdorferi in mice. J Immunol 154 : 1770–1776.
  35. Weis JJ, McCracken BA, Ma Y, Fairbairn D, Roper RJ, Morrison TB, Weis JH, Zachary JF, Dorge RW, Teuscher C, 1999. Identification of quantitative trait loci governing arthritis severity and humoral responses in the murine model of Lyme disease. J Immunol 162 : 948–956.
  36. Norris SJ, 2006. Antigenic variation with a twist—the Borrelia story. Mol Microbiol 60 : 1319–1322.
  37. Livey I, Gibbs CP, Schuster R, Dorner F, 1995. Evidence for lateral transfer and recombination in OspC variation in Lyme disease Borrelia. Mol Microbiol 18 : 257–269.
  38. Wilske B, Preac-Mursic V, Jauris S, Hofmann A, Pradel I, Soutschek E, Schwab E, Will G, Wanner G, 1993. Immunological and molecular polymorphisms of OspC, an immunodominant major outer surface protein of Borrelia burgdorferi. Infect Immun 61 : 2182–2191.
  39. Wilske B, Jauris-Heipke S, Lobentanzer R, Pradel I, Preac-Mursic V, Rossler D, Soutschek E, Johnson RC, 1995. Phenotypic analysis of outer surface protein C (OspC) of Borrelia burgdorferi sensu lato by monoclonal antibodies: relationship to genospecies and OspA serotype. J Clin Microbiol 33 : 103–109.
  40. Lunemann JD, Zarmas S, Priem S, Franz J, Zschenderlein R, Aberer E, Klein R, Schouls L, Burmester GR, Krause A, 2001. Rapid typing of Borrelia burgdorferi sensu lato species in specimens from patients with different manifestations of Lyme borreliosis. J Clin Microbiol 39 : 1130–1133.
  41. Jaulhac B, Heller R, Limbach FX, Hansmann Y, Lipsker D, Monteil H, Sibilia J, Piemont Y, 2000. Direct molecular typing of Borrelia burgdorferi sensu lato species in synovial samples from patients with Lyme arthritis. J Clin Microbiol 38 : 1895–1900.
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2009.80.252
Loading
/content/journals/10.4269/ajtmh.2009.80.252
Loading

Data & Media loading...

  • Received : 06 Jun 2008
  • Accepted : 06 Oct 2008

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error