Volume 81, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Clinical trials documented alarming post-treatment recurrence rates caused by recrudescence of surviving asexual blood stages, relapse from hypnozoites, or new infections. Here we describe high rates of recurrence (26–40% 180 days after treatment) in two cohorts of rural Amazonians exposed to low levels of malaria transmission after a vivax malaria episode treated with chloroquine-primaquine. Microsatellite analysis of 28 paired acute infection and recurrence parasites showed only two pairs of identical haplotypes (consistent with recrudescences or reactivation of homologous hypnozoites) and four pairs of related haplotypes (sharing alleles at 11–13 of 14 microsatellites analyzed). Local isolates of were extraordinarily diverse and rarely shared the same haplotype, indicating that frequent recurrences did not favor the persistence or reappearance of clonal lineages of parasites in the population. This fast haplotype replacement rate may represent the typical population dynamics of neutral polymorphisms in parasites from low-endemicity areas.


Article metrics loading...

Loading full text...

Full text loading...



  1. Feachem R, Sabot O, 2008. A new global malaria eradication strategy. Lancet 371: 1633–1635.
  2. Mendis K, Rietveld A, Warsame M, Bosman A, Greenwood B, Wernsdorfer WH, 2009. From malaria control to eradication: the WHO perspective. Trop Med Int Health 14: 1–7.
  3. Marques A, 1987. Human migration the spread of malaria in Brazil. Parasitol Today 3: 166–170.
  4. Barat LM, 2006. Four malaria success stories: how malaria burden was successfully reduced in Brazil, Eritrea, India, and Vietnam. Am J Trop Med Hyg 74: 12–16.
  5. Akhavan D, Musgrove P, Abrantes A, Gusmão Rd AG, 1999. Cost-effective malaria control in Brazil. Cost-effectiveness of a Malaria Control Program in the Amazon Basin of Brazil, 1988–1996. Soc Sci Med 49: 1385–1399.
  6. Loiola CC, da Silva CJ, Tauil PL, 2002. Malaria control in Brazil: 1965 to 2001. Rev Panam Salud Publica 11: 235–244.
  7. Ladislau JL, Leal MC, Tauil PL, 2006. Evaluation of the plan for intensification of malaria control actions in the Brazilian Amazon region, based on a decentralization process. Epidemiol Serv Saúde 15: 9–20.
  8. Pan American Health Organization (PAHO), 2008. Malaria: Progress Report. Available at: http://www.paho.org/English/GOV/CE/ce142-16-e.pdf. Accessed June 15, 2009.
  9. Sattabongkot J, Tsuboi T, Zollner GE, Sirichaisinthop J, Cui L, 2004. Plasmodium vivax transmission: chances for control? Trends Parasitol 20: 192–198.
  10. Pukrittayakamee S, Vanijanonta S, Chantra A, Clemens R, White NJ, 1994. Blood stage antimalarial efficacy of primaquine in Plasmodium vivax malaria. J Infect Dis 169: 932–935.
  11. Pukrittayakamee S, Chantra A, Simpson JA, Vanijanonta S, Clemens R, Looareesuwan S, White NJ, 2000. Therapeutic responses to different antimalarial drugs in vivax malaria. Antimicrob Agents Chemother 44: 1680–1685.
  12. Karunajeewa HA, Mueller I, Senn M, Lin E, Law I, Gomorrai PS, Oa O, Griffin S, Kotab K, Suano P, Tarongka N, Ura A, Lautu D, Page-Sharp M, Wong R, Salman S, Siba P, Ilett KF, Davis TM, 2008. A trial of combination antimalarial therapies in children from Papua New Guinea. N Engl J Med 359: 2545–2557.
  13. Baird JK, 2008. Real-world therapies and the problem of vivax malaria. N Engl J Med 359: 2601–2603.
  14. Craig AA, Kain KC, 1996. Molecular analysis of strains of Plasmodium vivax from paired primary and relapse infections. J Infect Dis 174: 373–379.
  15. Kirchgatter K, del Portillo HA, 1998. Molecular analysis of Plasmodium vivax relapses using the MSP1 molecule as a genetic marker. J Infect Dis 177: 511–515.
  16. Imwong M, Snounou G, Pukrittayakamee S, Tanomsing N, Kim JR, Nandy A, Guthmann JP, Nosten F, Carlton J, Looareesuwan S, Nair S, Sudimack D, Day NP, Anderson TJ, White NJ, 2007. Relapses of Plasmodium vivax infection usually result from activation of heterologous hypnozoites. J Infect Dis 195: 927–933.
  17. Chen N, Auliff A, Rieckmann K, Gatton M, Cheng Q, 2007. Relapses of Plasmodium vivax infection result from clonal hypnozoites activated at predetermined intervals. J Infect Dis 195: 934–941.
  18. Ceravolo IP, Sanchez BA, Sousa TN, Guerra BM, Soares IS, Braga EM, McHenry AM, Adams JH, Brito CF, Carvalho LH, 2009. Naturally acquired inhibitory antibodies to Plasmodium vivax Duffy binding protein are short-lived and allele-specific following a single malaria infection. Clin Exp Immunol 156: 502–510.
  19. Boulos M, Amato Neto V, Dutra AP, di Santi SM, Shiroma M, 1991. Frequency of malaria relapse due to Plasmodium vivax in a non-endemic region (São Paulo, Brazil). Rev Inst Med Trop Sao Paulo 33: 143–146.
  20. Duarte EC, Pang LW, Ribeiro LC, Fontes CJ, 2001. Association of subtherapeutic dosages of a standard drug regimen with failures in preventing relapses of vivax malaria. Am J Trop Med Hyg 65: 471–476.
  21. Villalobos-Salcedo JM, Tada MS, Kimura E, Menezes MJ, Pereira da Silva LH, 2000. In-vivo sensitivity of Plasmodium vivax isolates from Rondonia (western Amazon region, Brazil) to regimens including chloroquine and primaquine. Ann Trop Med Parasitol 94: 749–758.
  22. da Silva-Nunes M, Codeço CT, Malafronte RS, da Silva NS, Juncansen C, Muniz PT, Ferreira MU, 2008. Malaria on the Amazonian frontier: transmission dynamics, risk factors, spatial distribution, and prospects for control. Am J Trop Med Hyg 79: 624–635.
  23. Win TT, Lin K, Mizuno S, Liu Q, Ferreira MU, Tantular IS, Kojima S, Ishii A, Kawamoto F, 2002. Wide distribution of Plasmodium ovale in Myanmar. Trop Med Int Health 7: 231–239.
  24. Fundação Nacional de Saúde, 2001. Diagnóstico e tratamento da malária. Available online at: http://portal.saude.gov.br/portal/arquivos/pdf/manu_terapeutica_malaria.pdf. Accessed June 15, 2009.
  25. Tantular IS, Kawamoto F, 2003. An improved, simple screening method for detection of glucose-6-phosphate dehydrogenase deficiency. Trop Med Int Health 8: 569–574.
  26. Ferreira MU, da Silva-Nunes M, Bertolino CN, Malafronte RS, Muniz PT, Cardoso MA, 2007. Anemia and iron deficiency in school children, adolescents, and adults: a community-based study in rural Amazonia. Am J Public Health 97: 237–239.
  27. Karunaweera ND, Ferreira MU, Hartl DL, Wirth DF, 2007. Fourteen polymorphic microsatellite DNA markers for the human malaria parasite Plasmodium vivax. Mol Ecol Notes 7: 172–175.
  28. Anderson TJC, Su XZ, Bockarie M, Lagog M, Day KP, 1999. Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology 119: 113–125.
  29. Havryliuk T, Orjuela-Sánchez P, Ferreira MU, 2008. Plasmodium vivax: microsatellite analysis of multiple-clone infections. Exp Parasitol 120: 330–336.
  30. Haubold B, Hudson RR, 2000. LIAN 3.0: detecting linkage disequilibrium in multilocus data. Linkage analysis. Bioinformatics 16: 847–848.
  31. Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG, 2004. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186: 1518–1530.
  32. Mantel N, 1967. The detection of disease clustering and a generalized regression approach. Cancer Res 27: 209–220.
  33. Ferreira MU, Karunaweera ND, Da Silva-Nunes M, Da Silva NS, Wirth DF, Hartl DL, 2007. Population structure and transmission dynamics of Plasmodium vivax in rural Amazonia. J Infect Dis 195: 1218–1226.
  34. Karunaweera ND, Ferreira MU, Munasinghe A, Barnwell JW, Collins WE, King CL, Kawamoto F, Hartl DL, Wirth DF, 2008. Extensive microsatellite diversity in the human malaria parasite Plasmodium vivax. Gene 410: 105–112.
  35. Joy DA, Gonzalez-Ceron L, Carlton JM, Gueye A, Fay M, McCutchan TF, Su XZ, 2008. Local adaptation and vector-mediated population structure in Plasmodium vivax malaria. Mol Biol Evol 25: 1245–1252.
  36. Koepfli C, Mueller I, Marfurt J, Goroti M, Sie A, Oa O, Genton B, Beck HP, Felger I, 2009. Evaluation of Plasmodium vivax genotyping markers for molecular monitoring in clinical trials. J Infect Dis 199: 1074–1080.
  37. de Santana Filho FS, Arcanjo AR, Chehuan YM, Costa MR, Martinez-Espinosa FE, Vieira JL, Barbosa MG, Alecrim WD, Alecrim MG, 2007. Chloroquine-resistant Plasmodium vivax, Brazilian Amazon. Emerg Infect Dis 13: 1125–1126.
  38. Baird JK, 2004. Chloroquine resistance in Plasmodium vivax. Antimicrob Agents Chemother 48: 4075–4083.
  39. Bray PG, Deed S, Fox E, Kalkanidis M, Mungthin M, Deady LW, Tilley L, 2005. Primaquine synergises the activity of chloroquine against chloroquine-resistant P. falciparum. Biochem Pharmacol 70: 1158–1166.
  40. Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, Crabtree J, Angiuoli SV, Merino EF, Amedeo P, Cheng Q, Coulson RM, Crabb BS, del Portillo HA, Essien K, Feldblyum TV, Fernandez-Becerra C, Gilson PR, Gueye AH, Guo X, Kang’a S, Kooij TW, Korsinczky M, Meyer EV, Nene V, Paulsen I, White O, Ralph SA, Ren Q, Sargeant TJ, Salzberg SL, Stoeckert CJ, Sullivan SA, Yamamoto MM, Hoffman SL, Wortman JR, Gardner MJ, Galinski MR, Barnwell JW, Fraser-Liggett CM, 2008. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455: 757–763.

Data & Media loading...

Supplementary Data

Supplementary Table 1

  • Received : 17 Jun 2009
  • Accepted : 31 Jul 2009

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error