1921
Volume 81, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

, the agent of Chagas disease, can be subdivided into six discrete typing units (DTUs), TcI, TcIIa, TcIIb, TcIIc, TcIId or TcIIe, each having distinct epidemiologically important features. Dozens of genetic markers are available to determine the DTU to which a isolate belongs, but there is no consensus on which should be used. We selected five assays: three polymerase chain reaction (PCR)-restriction fragment length polymorphisms based on single nucleotide polymorphisms (SNPs) in the , Histone and loci, and PCR product size polymorphism of the LSU rDNA and mini-exon loci. Each assay was tested for its capacity to differentiate between DTUs using a panel of 48 genetically diverse clones. Some markers allowed unequivocal identification of individual DTUs, however, only by using a combination of multiple markers could all six DTUs be resolved. Based upon the results we recommend a triple-assay comprising the LSU rDNA, and markers for reliable, rapid, low-cost DTU assignment.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.2009.09-0305
2009-12-01
2019-07-16
Loading full text...

Full text loading...

/deliver/fulltext/14761645/81/6/0811041.html?itemId=/content/journals/10.4269/ajtmh.2009.09-0305&mimeType=html&fmt=ahah

References

  1. WHO, 2002. World Health Report. Geneva: World Health Organisation.
  2. Schofield CJ, Jannin J, Salvatella R, 2006. The future of Chagas disease control. Trends Parasitol 22: 583–588. [Google Scholar]
  3. Dias JC, 2007. Southern Cone Initiative for the elimination of domestic populations of Triatoma infestans and the interruption of transfusion Chagas disease: historical aspects, present situation, and perspectives. Mem Inst Oswaldo Cruz 102 (Suppl 1): 11–18. [Google Scholar]
  4. Feliciangeli MD, Sanchez-Martin MJ, Suarez B, Marrero R, Torrellas A, Bravo A, Medina M, Martinez C, Hernandez M, Duque N, Toyo J, Rangel R, 2007. Risk factors for Trypanosoma cruzi human infection in Barinas State, Venezuela. Am J Trop Med Hyg 76: 915–921. [Google Scholar]
  5. Gurtler RE, Kitron U, Cecere MC, Segura EL, Cohen JE, 2007. Sustainable vector control and management of Chagas disease in the Gran Chaco, Argentina. Proc Natl Acad Sci USA 104: 16194–16199. [Google Scholar]
  6. Coura JR, Junqueira ACV, Fernandes O, Valente SAS, Miles MA, 2002. Emerging Chagas disease in Amazonian Brazil. Trends Parasitol 18: 171–176. [Google Scholar]
  7. Dias JC, Bastos C, Araújo E, Mascarenhas AV, Martins Netto E, Grassi F, Silva M, Tatto E, Mendonça J, Araújo RF, Shikanai-Yasuda MA, Aras R, 2008. Acute Chagas disease outbreak associated with oral transmission. Rev Soc Bras Med Trop 41: 296–300. [Google Scholar]
  8. Nóbrega AA, Garcia MH, Tatto E, Obara MT, Costa E, Sobel J, Araujo WN, 2009. Oral transmission of Chagas disease by consumption of açaí palm fruit, Brazil. Emerg Infect Dis 5: 653–655. [Google Scholar]
  9. Fernandes O, Souto R, Castro J, Pereira J, Fernandes N, Junqueira A, Naiff R, Barrett T, Degrave W, Zingales B, Campbell D, Coura JR, 1998. Brazilian isolates of Trypanosoma cruzi from humans and triatomines classified into two lineages using mini-exon and ribosomal RNA sequences. Am J Trop Med Hyg 58: 807–811. [Google Scholar]
  10. Souto RP, Fernandes O, Macedo AM, Campbell DA, Zingales B, 1996. DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol Biochem Parasitol 83: 141–152. [Google Scholar]
  11. Oliveira RP, Broude NE, Macedo AM, Cantor CR, Smith CL, Pena SDJ, 1998. Probing the genetic population structure of Trypanosoma cruzi with polymorphic microsatellites. Proc Natl Acad Sci USA 95: 3776–3780. [Google Scholar]
  12. Valadares HMS, Pimenta JR, de Freitas JM, Duffy T, Bartholomeu DC, de Paula Oliveira R, Chiari E, Moreira MCV, Filho GB, Schijman AG, Franco GR, Machado CR, Pena SDJ, Macedo AM, 2008. Genetic profiling of Trypanosoma cruzi directly in infected tissues using nested PCR of polymorphic microsatellites. Int J Parasitol 38: 839–850. [Google Scholar]
  13. Llewellyn MS, Miles MA, Carrasco HJ, Lewis MD, Yeo M, Vargas J, Torrico F, Diosque P, Valente V, Valente SA, Gaunt MW, 2009. Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specific genotypes linked to human infection. PLoS Pathog 5: e1000410. [Google Scholar]
  14. Burgos JM, Altcheh J, Bisio M, Duffy T, Valadares HMS, Seidenstein ME, Piccinali R, Freitas JM, Levin MJ, Macchi L, Macedo AM, Freilij H, Schijman AG, 2007. Direct molecular profiling of minicircle signatures and lineages of Trypanosoma cruzi bloodstream populations causing congenital Chagas disease. Int J Parasitol 37: 1319–1327. [Google Scholar]
  15. Telleria J, Lafay B, Virreira M, Barnabe C, Tibayrenc M, Svoboda M, 2006. Trypanosoma cruzi: sequence analysis of the variable region of kinetoplast minicircles. Exp Parasitol 114: 279–288. [Google Scholar]
  16. Campbell D, Westenberger S, Sturm N, 2004. The determinants of Chagas disease: connecting parasite and host genetics. Curr Mol Med 4: 549–562. [Google Scholar]
  17. Momen H, 1999. Taxonomy of Trypanosoma cruzi: a commentary on characterization and nomenclature. Mem Inst Oswaldo Cruz 94: 181–184. [Google Scholar]
  18. Tibayrenc M, 1998. Genetic epidemiology of parasitic protozoa and other infectious agents: the need for an integrated approach. Int J Parasitol 28: 85–104. [Google Scholar]
  19. Brisse S, Barnabe C, Tibayrenc M, 2000. Identification of six Trypanosoma cruzi phylogenetic lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. Int J Parasitol 30: 35–44. [Google Scholar]
  20. Brisse S, Verhoef J, Tibayrenc M, 2001. Characterisation of large and small subunit rRNA and mini-exon genes further supports the distinction of six Trypanosoma cruzi lineages. Int J Parasitol 31: 1218–1226. [Google Scholar]
  21. Kawashita SY, Sanson GFO, Fernandes O, Zingales B, Briones MRS, 2001. Maximum-Likelihood divergence date estimates based on rRNA gene sequences suggest two scenarios of Trypanosoma cruzi intraspecific evolution. Mol Biol Evol 18: 2250–2259. [Google Scholar]
  22. Mendonça M, Nehme N, Santos S, Cupolillo E, Vargas N, Junqueira A, Naiff R, Barrett T, Coura J, Zingales B, Fernandes O, 2002. Two main clusters within Trypanosoma cruzi zymodeme 3 are defined by distinct regions of the ribosomal RNA cistron. Parasitology 124: 177–184. [Google Scholar]
  23. Ceballos LA, Cardinal MV, Vazquez-Prokopec GM, Lauricella MA, Orozco MM, Cortinas R, Schijman AG, Levin MJ, Kitron U, Gürtler RE, 2006. Long-term reduction of Trypanosoma cruzi infection in sylvatic mammals following deforestation and sustained vector surveillance in northwestern Argentina. Acta Trop 98: 286–296. [Google Scholar]
  24. Yeo M, Acosta N, Llewellyn M, Sanchez H, Adamson S, Miles GAJ, Lopez E, Gonzalez N, Patterson JS, Gaunt MW, de Arias AR, Miles MA, 2005. Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. Int J Parasitol 35: 225–233. [Google Scholar]
  25. Fernandes O, Sturm NR, Derre R, Campbell DA, 1998. The mini-exon gene: a genetic marker for zymodeme III of Trypanosoma cruzi. Mol Biochem Parasitol 95: 129–133. [Google Scholar]
  26. Rozas M, Doncker SD, Adaui V, Coronado X, Barnabe C, Tibyarenc M, Solari A, Dujardin J-C, 2007. Multilocus polymerase chain reaction restriction fragment-length polymorphism genotyping of Trypanosoma cruzi (Chagas Disease): taxonomic and clinical applications. J Infect Dis 195: 1381–1388. [Google Scholar]
  27. Westenberger SJ, Barnabe C, Campbell DA, Sturm NR, 2005. Two hybridization events define the population structure of Trypanosoma cruzi. Genetics 171: 527–543. [Google Scholar]
  28. Lewis MD, Llewellyn MS, Gaunt MW, Yeo M, Carrasco HJ, Miles MA, 2009. Flow cytometric analysis and microsatellite genotyping reveal extensive DNA content variation in Trypanosoma cruzi populations and expose contrasts between natural and experimental hybrids. Int J Parasitol 39: 1305–1317. [Google Scholar]
  29. Carrasco H, Frame I, Valente S, Miles M, 1996. Genetic exchange as a possible source of genomic diversity in sylvatic populations of Trypanosoma cruzi. Am J Trop Med Hyg 54: 418–424. [Google Scholar]
  30. Sturm NR, Vargas NS, Westenberger SJ, Zingales B, Campbell DA, 2003. Evidence for multiple hybrid groups in Trypanosoma cruzi. Int J Parasitol 33: 269–279. [Google Scholar]
  31. Gaunt MW, Yeo M, Frame IA, Stothard JR, Carrasco HJ, Taylor MC, Mena SS, Veazey P, Miles GAJ, Acosta N, de Arias AR, Miles MA, 2003. Mechanism of genetic exchange in American trypanosomes. Nature 421: 936–939. [Google Scholar]
  32. Brisse S, Henriksson J, Barnabe C, Douzery EJP, Berkvens D, Serrano M, De Carvalho MRC, Buck GA, Dujardin J-C, Tibayrenc M, 2003. Evidence for genetic exchange and hybridization in Trypanosoma cruzi based on nucleotide sequences and molecular karyotype. Infect Genet Evol 2: 173–183. [Google Scholar]
  33. Machado CA, Ayala FJ, 2001. Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of Trypanosoma cruzi. Proc Natl Acad Sci USA 98: 7396–7401. [Google Scholar]
  34. de Freitas JM, Augusto-Pinto L, Pimenta JR, Bastos-Rodrigues L, Gonçalves VF, Teixeira SMR, Chiari E, Junqueira AnCV, Fernandes O, Macedo AM, Machado CR, Pena SDJ, 2006. Ancestral genomes, sex, and the population structure of Trypanosoma cruzi. PLoS Pathog 2: 24. [Google Scholar]
  35. Barnabé C, Yaeger R, Pung O, Tibayrenc M, 2001. Trypanosoma cruzi: a considerable phylogenetic divergence indicates that the agent of Chagas disease is indigenous to the native fauna of the United States. Exp Parasitol 99: 73–79. [Google Scholar]
  36. Marcili A, Lima L, Valente VC, Valente SA, Batista JS, Junqueira AC, Souza AI, da Rosa JA, Campaner M, Lewis MD, Llewellyn MS, Miles MA, Teixeira MM, 2009. Comparative phylogeography of Trypanosoma cruzi TCIIc: new hosts, association with terrestrial ecotopes, and spatial clustering. Infect Genet Evol (In press). [Google Scholar]
  37. Thomas S, Westenberger SJ, Campbell DA, Sturm NR, 2005. Intragenomic spliced leader RNA array analysis of kineto-plastids reveals unexpected transcribed region diversity in Trypanosoma cruzi. Gene 352: 100–108. [Google Scholar]
  38. Herrera C, Bargues MD, Fajardo A, Montilla M, Triana O, Vallejo GA, Guhl F, 2007. Identifying four Trypanosoma cruzi I isolate haplotypes from different geographic regions in Colombia. Infect Genet Evol 7: 535–539. [Google Scholar]
  39. Mauricio IL, Yeo M, Baghaei M, Doto D, Pratlong F, Zemanova E, Dedet J-P, Lukes J, Miles MA, 2006. Towards multilocus sequence typing of the Leishmania donovani complex: resolving genotypes and haplotypes for five polymorphic metabolic enzymes (ASAT, GPI, NH1, NH2, PGD). Int J Parasitol 36: 757–769. [Google Scholar]
  40. Ravel C, Cortes S, Pratlong F, Morio F, Dedet J-P, Campino L, 2006. First report of genetic hybrids between two very divergent Leishmania species: Leishmania infantum and Leishmania major. Int J Parasitol 36: 1383–1388. [Google Scholar]
  41. Cooper MA, Adam RD, Worobey M, Sterling CR, 2007. Population genetics provides evidence for recombination in Giardia. Curr Biol 17: 1984–1988. [Google Scholar]
  42. Boyle JP, Rajasekar B, Saeij JPJ, Ajioka JW, Berriman M, Paulsen I, Roos DS, Sibley LD, White MW, Boothroyd JC, 2006. Just one cross appears capable of dramatically altering the population biology of a eukaryotic pathogen like Toxoplasma gondii. Proc Natl Acad Sci USA 103: 10514–10519. [Google Scholar]
  43. Dodgson AR, Pujol C, Pfaller MA, Denning DW, Soll DR, 2005. Evidence for recombination in Candida glabrata. Fungal Genet Biol 42: 233–243. [Google Scholar]
  44. Tavanti A, Gow NAR, Maiden MCJ, Odds FC, Shaw DJ, 2004. Genetic evidence for recombination in Candida albicans based on haplotype analysis. Fungal Genet Biol 41: 553–562. [Google Scholar]
  45. Bosseno M-F, Telleria J, Vargas F, Yaksic N, Noireau F, Morin A, Brenière SF, 1996. Trypanosoma cruzi: study of the distribution of two widespread clonal genotypes in Bolivian Triatoma infestans vectors shows a high frequency of mixed infections. Exp Parasitol 83: 275–282. [Google Scholar]
  46. Cardinal MV, Lauricella MA, Ceballos LA, Lanati L, Marcet PL, Levin MJ, Kitron U, Gürtler RE, Schijman AG, 2008. Molecular epidemiology of domestic and sylvatic Trypanosoma cruzi infection in rural northwestern Argentina. Int J Parasitol 38: 1533–1543. [Google Scholar]
  47. Yeo M, Lewis MD, Carrasco HJ, Acosta N, Llewellyn M, da Silva Valente SA, de Costa Valente V, de Arias AR, Miles MA, 2007. Resolution of multiclonal infections of Trypanosoma cruzi from naturally infected triatomine bugs and from experimentally infected mice by direct plating on a sensitive solid medium. Int J Parasitol 37: 111–120. [Google Scholar]
  48. Souto RP, Vargas N, Zingales B, 1999. Trypanosoma rangeli: discrimination from Trypanosoma cruzi based on a variable domain from the large subunit ribosomal RNA gene. Exp Parasitol 91: 306–314. [Google Scholar]
  49. Miles MA, Yeo M, Gaunt MW, 2003. Genetic diversity of Trypanosoma cruzi and the epidemiology of Chagas disease. Kelly JM, ed. Molecular Mechanisms of Pathogenesis in Chagas Disease. New York: Kluwer Academic, 1–15.
  50. Tibayrenc M, Ayala F, 1988. Isozyme variability of Trypanosoma cruzi, the agent of Chagas’ disease: genetical, taxonomical and epidemiological significance. Evolution 42: 277–292. [Google Scholar]
  51. Anonymous, 1999. Recommendations from a satellite meeting. Mem Inst Oswaldo Cruz 94: 429–432. [Google Scholar]
  52. Roellig DM, Brown EL, Barnabe C, Tibayrenc M, Steurer FJ, Yabsley MJ, 2008. Molecular typing of Trypanosoma cruzi isolates, United States. Emerg Infect Dis 14: 1123–1125. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.2009.09-0305
Loading
/content/journals/10.4269/ajtmh.2009.09-0305
Loading

Data & Media loading...

  • Received : 02 Jun 2009
  • Accepted : 27 Jul 2009

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error