Volume 81, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645


Of 860 snakes brought to 10 hospitals in Sri Lanka with the patients they had bitten, 762 (89%) were venomous. Russell’s vipers () and hump-nosed pit vipers () were the most numerous and was the most widely distributed. Fifty-one (6%) were misidentified by hospital staff, causing inappropriate antivenom treatment of 13 patients. Distinctive clinical syndromes were identified to aid species diagnosis in most cases of snake bite in Sri Lanka where the biting species is unknown. Diagnostic sensitivities and specificities of these syndromes for envenoming were 78% and 96% by , 66% and 100% by , 14% and 100% by , and 10% and 97% by , respectively. Although only polyspecific antivenoms are used in Sri Lanka, species diagnosis remains important to anticipate life-threatening complications such as local necrosis, hemorrhage and renal and respiratory failure and to identify likely victims of envenoming by who will not benefit from existing antivenoms. The technique of hospital-based collection, labeling and preservation of dead snakes brought by bitten patients is recommended for rapid assessment of a country’s medically-important herpetofauna.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Baldaeus P, 1672. Naauwkeurige beschryvinge van Malabar en Choromandel, der zelver aangrenzende ryken, en het machtige eyland Ceylon. Amsterdam: JJ van Waesberge and J van Someren.
  2. Sawai Y, Toriba M, Itokawa H, De Silva A, Perera GLS, Kottegoda MB, 1984. Study on deaths due to snakebite in Anuradhapura District, Sri Lanka. The Snake 16: 7–15. [Google Scholar]
  3. Fox S, Rathuwithana AC, Kasturiratne A, Lalloo DG, de Silva HJ, 2006. Underestimation of snakebite mortality by hospital statistics in the Monaragala District of Sri Lanka. Trans R Soc Trop Med Hyg 100: 693–695. [Google Scholar]
  4. de Silva A, 1990. Colour Guide to the Snakes of Sri Lanka. Portishead, United Kingdom: R & A Publishing Ltd.
  5. Ranasinghe L, Uragoda CG, 1983. Symposium: medically important snakes and snake-bite in Sri Lanka. Ceylon Med J 28: 107–201. [Google Scholar]
  6. Theakston RD, Reid HA, 1977. Micro-ELISA for detecting and assaying snake venom and venom antibody. Lancet ii: 639–641. [Google Scholar]
  7. Virivan C, Veeravat U, Warrell MJ, Theakston RD, Warrell DA, 1986. ELISA confirmation of acute and past envenoming by the monocellate Thai cobra (Naja kaouthia). Am J Trop Med Hyg 35: 173–181. [Google Scholar]
  8. Ho M, Warrell MJ, Warrell DA, Bidwell D, Voller A, 1986. A critical reappraisal of the use of enzyme-linked immunosorbent assays in the study of snake bite. Toxicon 24: 211–221. [Google Scholar]
  9. Phillips RE, Theakston RD, Warrell DA, Galagedera Y, Abeysekera DT, Dissanayake P, Hutton RA, Aloysius DJ, 1988. Paralysis, rhabdomyolysis and haemolysis caused by bites of Russell’s viper (Vipera russelli pulchella) in Sri Lanka: failure of Haffkine antivenom. Q J Med 68: 691–716. [Google Scholar]
  10. Dong le V, Selvanayagam ZE, Gopalakrishnakone P, Eng KH, 2002. A new avidin-biotin optical immunoassay for the detection of beta-bungarotoxin and application in diagnosis of experimental snake envenomation. J Immunol Methods 260: 125–136. [Google Scholar]
  11. Chandler HM, Hurrell JG, 1982. A new enzyme immunoassay system suitable for field use and its application in a snake venom detection kit. Clin Chim Acta 21: 225–230. [Google Scholar]
  12. Viravan C, Looareesuwan S, Kosakarn W, Wuthiekanun V, McCarthy CJ, Stimson AF, Bunnag D, Harinasuta T, Warrell DA, 1992. A national hospital-based survey of snakes responsible for bites in Thailand. Trans R Soc Trop Med Hyg 86: 100–106. [Google Scholar]
  13. Warrell DA, Davidson NMcD, Greenwood BM, Ormerod LD, Pope HM, Watkins BJ, Prentice CR, 1977. Poisoning by bites of the saw-scaled viper (Echis carinatus) in Nigeria. Q J Med 46: 33–62. [Google Scholar]
  14. Sano-Martins IS, Fan HW, Castro SC, Tomy SC, Franca FO, Jorge MT, Kamiguti AS, Warrell DA, Theakston RD, 1994. Reliability of the 20 minute whole blood clotting test (WBCT20) as an indicator of low plasma fibrinogen concentration in patients envenomed by Bothrops snakes, Butantan Institute Antivenom Study Group. Toxicon 32: 1045–1050. [Google Scholar]
  15. Ariaratnam CA, Thuraisingam V, Kularatne SA, Sheriff MH, Theakston RD, de Silva A, Warrell DA, 2008. Frequent and potentially fatal envenoming by hump-nosed pit vipers (Hypnale hypnale and H. nepa) in Sri Lanka: lack of effective antivenom. Trans R Soc Trop Med Hyg 102: 1120–1126. [Google Scholar]
  16. Ariaratnam CA, Sheriff MH, Theakston RD, Warrell DA, 2008. Distinctive epidemiologic and clinical features of common krait (Bungarus caeruleus) bites in Sri Lanka. Am J Trop Med Hyg 79: 458–462. [Google Scholar]
  17. Amarasekera N, Jayawardena A, Ariyaratnam A, Hewage UC, De Silva A, 1994. Bites of a sea snake (Hydrophis spiralis): a case report from Sri Lanka. Am J Trop Med Hyg 97: 195–198. [Google Scholar]
  18. Senanayake MP, Ariaratnam CA, Abeywickrema S, Belligaswatte A, 2005. Two Sri Lankan cases of identified sea snake bites without envenoming. Toxicon 45: 861–863. [Google Scholar]
  19. Warrell DA, 1994. Sea snake bites in the Asia-Pacific Region. Gopalakrishnakone P, ed. Sea Snake Toxinology. Singapore: Singapore University Press, 1–36.
  20. Gnanathasan CA, Rodrigo PC, Peranantharajah S, Anitha Coonghe, Pieris P, 2008. A Case Series of Envenoming by Saw-Scaled Viper (Echis carinatus) in Sri Lanka. Global Issues in Clinical Toxinology, Melbourne. Available at: http://www.snakebiteinitiative.org/files/GICT%20Conference%202008/Session%204/Dr%20Ariaranee%20Gnanathasan.ppt. Accessed July 12, 2009.
  21. Pathmeswaran A, Kasturiratne A, Fonseka M, Nandasena S, Lalloo DG, de Silva HJ, 2006. Identifying the biting species in snakebite by clinical features: an epidemiological tool for community surveys. Trans R Soc Trop Med Hyg 100: 874–878. [Google Scholar]
  22. Sellahewa KH, Gunawardena G, Kumararatne MP, 1995. Efficacy of antivenom in the treatment of severe local envenomation by the hump-nosed viper (Hypnale hypnale). Am J Trop Med Hyg 53: 260–262. [Google Scholar]
  23. Seneviratne SL, Opanayake CJ, Ratnayake NS, Sarath Kumara KE, Sugathadasa AM, Weerasooriya N, Wickrema WA, Gunatilake SB, de Silva HJ, 2000. Use of antivenom serum in snake bite: a prospective study of hospital practice in the Gampaha district. Ceylon Med J 45: 65–68. [Google Scholar]
  24. Premawardhena AP, de Silva CE, Fonseka MM, Gunatilake SB, de Silva HJ, 1999. Low dose subcutaneous adrenaline to prevent acute adverse reactions to antivenom serum in people bitten by snakes: randomised placebo controlled trial. BMJ 318: 730–733. [Google Scholar]

Data & Media loading...

  • Received : 29 Apr 2009
  • Accepted : 16 Jun 2009

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error